
Stability and Capacity of Peer-to-Peer Assisted
Video-on-Demand Applications

Franco Robledo Amoza∗
frobledo@fing.edu.uy

Pablo Rodrı́guez-Bocca∗
prbocca@fing.edu.uy

Pablo Romero∗
promero@fing.edu.uy

Claudia Rostagnol∗
crostag@fing.edu.uy

∗ Departamento de Investigación Operativa, Facultad de Ingenierı́a, Universidad de la República.
Julio Herrera y Reissig 565, 11300, Montevideo, Uruguay.

Abstract—We propose a mathematical framework for the
optimal design of a video on-demand (VoD) application under
regime. Peers join the network following a poissonian process,
download progressively one or possibly many concurrent video
contents, and abort the system when they wish. The system
is supported by static servers managed by the operator, called
super-peers, and the altruism of peers, that upload resources and
might stay online even after completing downloading.
Our goal is to minimize the expected download time perceived
by end-users under regime. We propose a general fluid model,
and show that it is stable, reaching its regime. Via the Little’s
law, we find closed expressions for the expected waiting time
under regime in terms of the popularity of different contents,
file sharing efficiency and other network parameters. We state
theoretically that this system outperforms traditional Content
Delivery Networks (CDN). The operator can decide only the
number of video replicas stored in each super-peer, a fact
that has a direct impact on the mean waiting times. Hence, a
combinatorial optimization problem is introduced, whose nature
is similar to the multi-knapsack problem (i.e. the items are video
contents, and the knapsacks are the super-peers storage). A
greedy randomized resolution is here designed, and a comparison
between traditional content distribution systems promotes the
deployment of peer-to-peer video on-demand services.
Finally, real-life scenarios are studied based on traces taken from
YouTube. The results confirm that the peer-to-peer model can
outperform five times the throughput of traditional CDN under
flash-crowded scenarios.

Index Terms—Peer-to-Peer, Video on-demand, Fluid Model,
Combinatorial Optimization Problem.

I. INTRODUCTION

Peer-to-peer (P2P) networks are self-organized communities
virtually installed over the Internet infrastructure, in which
their participants, called peers, both receive and share their
resources (CPU-time, bandwidth and/or contents). The P2P
philosophy represents an attractive alternative to traditional
Content Delivery Networks (CDN), statically deployed with
multiple servers. The cooperation between peers in a P2P
system provides high scalability properties and, at the same
time, low operational costs. Nowadays, P2P computing is
a dynamic research area, and mathematical tools play a
fundamental role in their understanding and design, in part
because an experimental fail in an on-line test will disappoint

978-1-4673-2017-7/12/$31.00 c©2012 IEEE

users, with serious drawbacks. Peer evolution and scalability,
service capacity, file sharing efficiency and free riding are
major causes of concern during the mathematical analysis of
these networks.

There are basically three video streaming modes. The
simplest one is file-sharing, where the video content is first
generated, then distributed and downloaded by peers, and fi-
nally watched just after completing the download. The second
is on-demand streaming, where the video is distributed as
progressive download to end-users. In progressive download
protocols, the video is downloaded on the end-user’s device
in a best effort mode, because the protocols do not include
any consumer-producer synchronization (i.e. real-time con-
strains), and user can start watching before completing the
download. The third mode is called live-streaming, where the
video content is generated, distributed and played by peers
at the same time with strict real-time requirements. In this
case, a streaming protocol is used, and there is an explicit
synchronization between consumers and producer.

A very inspiring system for replication and fast dissemina-
tion of files is BitTorrent, created by Bram Cohen [1], [2].
BitTorrent was originally designed for file sharing applica-
tions. However, nowadays most of the P2P applications over
the Internet are BitTorrent-based. One of such applications is
the GoalBit Video Platform [3], [4], currently used to share
live and on-demand video streaming over a P2P network. In
these systems, peers are either downloaders when they actively
download content; or seeders, once they finished the download
process but remain connected, sharing the already downloaded
contents. There is also an entity or node named tracker,
which knows all the peers that are seeding or downloading a
content. GoalBit introduces a third type of node to the network
named super-peer. These kind of nodes have higher bandwidth
resources than a normal peer, and usually join the network with
longer life-times (very stable peers). The role of super-peer is
to store and forward the contents to common peers (with a
very short life in the system). In the current GoalBit protocol
specification, super-peers are nodes managed by the operator
of the platform, hosted in the cloud, and implement a specific
caching policy [3].

In this paper we propose a general fluid model to address
peer evolution and measure expected download times under
regime. The main purpose is to decide the number of video

replicas that must be stored in each super-peer, in order to
improve the quality of experience of end-users.

This paper is structured as follows. Section II contains a
summary of related work. Section III introduces a general
fluid model, in which peers can concurrently download several
contents, and are classified according to the number of simul-
taneous downloads. Two special cases are discussed in-depth
in Section IV. The first is a concurrent model for BitTorrent-
based networks. The second derived from the most general
is a sequential fluid model, in which each peer downloads
video contents sequentially. We find closed expressions for
the expected waiting times in both models, regarding P2P
and CDN systems separately, and prove that the performance
of a P2P system is never worse than that of a CDN. A
combinatorial optimization problem (COP) is introduced and
solved in Section V, trying to allocate video replicas in super-
peers in order to minimize the expected waiting time. Given
that the COP has similarities with the Multi-knapsack Problem
(which is Strongly NP-Hard) we develop a greedy randomized
heuristic. Real-life scenarios based on YouTube traces are
analyzed in Section VI. Finally, Section VII contains the main
conclusions and an brief enumeration of several aspects for
future research.

II. RELATED WORK

Usually, the development of experiments in real P2P sys-
tems is expensive, and a fail has a disappointing effect in final
users. As a consequence, the scientific community works to
develop mathematical models in order to predict the behavior
of the system. In [5], Yang and de Veciana justify mathemati-
cally the consistency of the service capacity of P2P file sharing
services. They propose a branching process, and state that a
P2P system highly outperforms a traditional CDN. A basic
Markovian model is also introduced to describe peer evolution.
In [6], Qiu and Srikant analyze BitTorrent-like systems under
steady state and its variability, showing empirical validation as
well. A steady state analysis is first presented with a simple
fluid model, in which the peer evolution is captured by ex-
ogenous poissonian arrivals and exponential departures in the
system. They consider homogeneous peers, and find a closed
expression for the expected waiting time. A sensitivity analysis
of this performance measure with respect to different design
parameters offers one of the first insights of the BitTorrent’s
soundness. A special treatment is included for the file sharing
efficiency between peers, and states the robustness of random
peer selection. The steady state is partially characterized as
locally stable, and it was conjectured that it is globally stable
as well. The conjecture is true, and proved for the first
time in [7]. This work is generalized in a first stage in [8],
extending the model for several concurrent multi-torrents. The
authors argue that most BitTorrent users download several
files at the same time. A second generalization can be found
in [9], where the authors introduce the presence of super-peers
in the network, and study the steady state of a video on-
demand application. Here, we propose a further generalization
of the mathematical approach considered in [9]. A general

fluid model is presented, adding node churn, valuable network
parameters and the fact that peers (as well as seeders) may
abort the system when they wish, even before downloading
the complete video file. This general model can be used as an
analytical framework for future research.

We study concurrent and sequential on-demand video
streaming, in which the swarm is assisted by super-peers,
managed by the operator. Our goal is to distribute video
contents over the GoalBit platform, planning the efficient
usage of storage capacity. The scheduling must attend videos’
popularity, and looks forward to minimize the mean expected
download time for end-users. We include a stability analysis of
the fluid model, and prove that the P2P network consistently
outperforms traditional CDN.

III. GENERAL FLUID MODEL

Consider an open network which offers K video contents
with sizes {s1, . . . ,sK} measured in Megabits. Peers join the
network, download progressively one or possibly many con-
current video contents and abort the system when they wish.
Peers are then classified in exhaustive and mutually disjoint
sets C1, . . . ,CK , where Ci is the set of peers that download
i video contents simultaneously. Denote xi

j(t) the number of
peers from class Ci that are downloading video j in a certain
instant t. They join the network following a poissonian process
of respective rates λ i

j, and abort the system with exponential
law, and respective rates θ i

j. The number of seeders owning
exactly i contents, and seeding video j at instant t are denoted
by yi

j(t), and depart the system exponentially with rates γ i
j.

We shall assume identical peers, with respective upload and
download capacities denoted by µ and c (measured in Mbps).
Peers also contribute with the system uploading video contents
although they do not have the entire file as seeders. The file
sharing efficiency between peers is a coefficient η : 0≤ η ≤ 1
that indicates the sharing percentage between downloaders. All
seeders from class Ci that own video j can decide a portion
α i

j of their available uploading capacity, in order to feed
downloaders of video j. Super-peers behave like seeders, but
they do not leave the system. They are denoted by zi

j, and have
upload capacity ρ . All this information can be summarized in
a general fluid model (GFM), specified as follows:

dxi
j

dt
= λ

i
j−θ

i
jx

i
j(t)−min{ci

jx
i
j(t),ηµ

i
jx

i
j(t)+∑

k
(µk

j yk
j(t)+ρ

k
j zk

j)}

(1)
dyi

j

dt
= min{ci

jx
i
j(t),ηµ

i
jx

i
j(t)+∑

k
(µk

j yk
j(t)+ρ

k
j zk

j)}− γ
i
jy

i
j(t),

(2)

where additionally:
1) µ i

j =
µi
s j

is the class Ci upload rate for video j, and
∑k µk = µ .

2) ci
j =

ci
s j

is the class Ci download rate for video j, and
∑k ck = c.

3) ρ i
j =

ρi
s j

is the class Ci upload rate of video j for super-
peers, and ∑k ρk = ρ .

4) θ i
j is the departure rate of peers.

5) γ i
j is the departure rate of seeders.

The minimum function in the second side of the equalities
means that the bottleneck is either in downloading or upload-
ing. The GFM is a non-linear switched system of ordinary
differential equations. We will denote for short [n] = {1, . . . ,n}.

IV. TWO OUTSTANDING SUB-MODELS

A. Concurrent Fluid Model (CFM)

The number of variables involved in the GFM force us to
assume further hypothesis in order to analyze the stationary
state of the system and have an insight of the super-peers
optimal behavior, which are the only nodes that can be
managed by the network operator. Inspired in BitTorrent-based
systems, we will strictly stick to the following assumptions:

1) “Fair transmission”: the resources are equally distributed
in the different concurrent videos: µi =

µ

i , ci =
c
i and

ρi =
ρ

i .
2) “Tit-for-tat”: Peers in class Ci that at time t are down-

loading video j receive from all other downloaders a
streaming rate proportional to the upload bandwidth µ i

j
and their population:(

µ i
jx

i
j(t)

∑k µk
j xk

j(t)

)
∑
k

ηµ
k
j xk

j(t) = ηµ
i
jx

i
j(t).

3) “Fair Seeders”: Peers from class Ci that at time t are
downloading video j receive from all the seeders a
streaming rate proportional to the download bandwidth
and their population:(

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

)
∑
k

µ
k
j yk

j(t) = α
i
j ∑

k
µ

k
j yk

j(t).

4) “Fair Super-peers”: Analogously, peers from class Ci

that at time t are downloading video j receive from
all the super-peers a streaming rate proportional to the
download bandwidth and their population: α i

j ∑k ρk
j zk

j.
5) “Peers Departures”: the peers and seeders departures

follow the Zipf law, being linearly decreasing with
respect to the numbers of concurrent video downloads:
γ i

j = γ/i, and θ i
j = θ/i.

After including these BitTorrent-based assumptions to the
GFM we get the P2P Concurrent Fluid Model (P2P-CFM):

dxi
j

dt
= λ

i
j−

θ

i
xi

j−min{ c
is j

xi
j,η

µ

is j
xi

j +α
i
j ∑

k
(

µ

s j

yk
j

k
+

ρ

s j

zk
j

k
)}

(3)

dyi
j

dt
= min{ c

is j
xi

j,η
µ

is j
xi

j +α
i
j ∑

k
(

µ

s j

yk
j

k
+

ρ

s j

zk
j

k
)}− γ

i
jy

i
j, (4)

where the independent variable t is omitted for short. Table 1
summarizes the symbolic notation.

K available videos
s j size of video-item j
xi

j(t) downloaders in class Ci downloading video j at time t
yi

j(t) seeders in class Ci seeding video j at time t
zi

j(t) super-peers in class Ci seeding video j at time t
λ i

j arrival rate for peers in class Ci requesting video j
θ i

j departure rate of peers in class Ci requesting video j
γ i

j departure rate of seeders in class Ci seeding video j
c total download bandwidth for each peer.
µ total upload bandwidth for each peer.
ρ total upload bandwidth for each super-peer.
η exchange efficiency between peers (η ∈ [0,1]).

Fig. 1. Symbology of the Concurrent Fluid Model.

B. Rest Point Analysis for CFM

If we find a time t such that simultaneously dx j
i (t)
dt =

dy j
i (t)
dt =

0 for every pair i, j∈ [K], the system will rest indefinitely in the
same constant vector state (xi

j,y
i
j). This is called a stationary

state. Now, we will find the stationary state for the P2P-CFM.

Proposition IV.1. The rest point for the P2P-CFM is:

xi
j = max

 iλ i
js j

θs j + c
,

iλ i
j(λ j−ρ j−φ j)

λ j(θ + ηµ

s j
− µθ

γs j
)

 (5)

yi
j =

λ i
j−θ i

jx
i
j

γ i
j

, (6)

where ρ j = ∑k ρk
j zk

j and φ j =
µλ j
γs j

.

Proof: Summing Equations (3) and (4) we immediately
prove Expression (6). When the download capacity is the
system’s bottleneck then the minimum function is equal to
c

is j
xi

j, so the steady state for the P2P-CFM can be found
solving a linear system of equations:

xi
j =

iλ i
js j

θs j + c
(7)

Denote for short ρ j = ∑k ρk
j zk

j and φ j = ∑k
µk

j λ k
j

γk
j

=
µλ j
γs j

.

On the other hand, when the upload capacity is the system’s
bottleneck, summing (3) for all i ∈ [K] we get:

∑
i

xi
j

i
=

(
θ + ηµ

s j
− µθ

γs j

)
λ j−φ j−ρ j

. (8)

Additionally, Equation (3) can be re-written:

λ
i
j =

θ +
ηµ

s j
− µθ

γs j
+

ρ j +φ j

∑i
xi

j
i

 xi
j

i
(9)

Replacing (8) into (9) and spreading the expression, we
obtain the desired result.

A traditional CDN (with a client-server paradigm) can
be viewed as a particular case of this analytical approach.

Specifically, users do not cooperate (µ = 0), seeders do not
participate in the network (yi

j(t) = 0) and the previously
named super-peers are now static servers. Replacing these
parameters in Expression (3), the CDN Concurrent Fluid
Model (CDN-CFM) is defined by the following system of
ordinary differential equations:

dxi
j(t)

dt
= λ

i
j−θ

xi
j

i
−min

{
c
s j

xi
j(t)

i
,α i

j(t)∑
k

ρ
k
j zk

j

}
(10)

The expressions for the steady state in the CDN can be
immediately obtained making µ = 0 in Equation (5):

xi
jCDN

= max

{
iλ i

js j

θs j + c
,

iλ i
j(λ j−ρ j)

θλ j

}
(11)

Now we can compare the capacity of the P2P-CFM and
CDN-CFM systems. Let us assume stability for a moment (we
prove asymptotic stability of a special but important case in the
following subsection). Denote T P2P

CFM and TCDN
CFM the expected

waiting times under regime for the respective systems P2P−
CFM and CDN−CFM. The following proposition is intuitive,
and sounds:

Proposition IV.2. T P2P
CFM ≤ TCDN

CFM

Proof: Consider the random variable T i
j that represents

the waiting time for user-type (j, i) (a member of class xi
j).

By the Little’s law we relate the mean waiting time with the
number of users under regime:

E(T i
j) =

xi
j

λ i
j
. (12)

Equality (12) holds for both systems (P2P and CDN), where
the number of users are xi

jP2P
and xi

jCDN
respectively. Let us

denote X to the random variable that represents the class of
certain arrival in the GFM. It has range RX = {(j, i) : j, i∈ [K]},
and P(X = (j, i)) is the probability that a certain new arrival
is from class xi

j. The poissonian arrivals with intensity rates

λ i
j imply that P(X = (j, i)) =

λ i
j

λ
, being λ the global sum rate.

The mean waiting time of a user in the P2P GFM can be found
via conditional expectation:

E(T) = E(E(T/X)) =

= ∑
i

∑
j

P(X = (j, i))E(T/X = (j, i))

= ∑
i

∑
j

λ i
j

λ
E(T i

j)

=
1
λ

∑
i

∑
j

λ
i
jx

i
j,

where we used the Little’s law. Notice that equalities hold
again for both systems:

T P2P
CFM =

1
λ

∑
i

∑
j

λ
i
jx

i
jP2P

,

TCDN
CFM =

1
λ

∑
i

∑
j

λ
i
jx

i
jCDN

.

Hence, it suffices to prove that the number of downloaders
in the P2P fluid model is never greater than the one in the
CDN model: xi

jP2P
≤ xi

jCDN
. We use Expressions (11), (5) and

elementary algebra. If the download is the system’s bottleneck
then the equality is obvious. Otherwise, the second argument
of the maximum function in Expression (5) must dominate,
and moreover its numerator iλ i

j(λ j−ρ j−φ j) is positive. The
following chain of inequalities holds:

xi
jP2P

=
iλ i

j(λ j−ρ j)− iλ i
jφ j

λ j

(
θ + µ

s j
(η− θ

γ
)
)

<
iλ i

j(λ j−ρ j)

θλ j

= xi
jCDN

.

This inequality holds if and only if

(−iλ i
jφ j)(θλ j)< iλ i

j(λ j−ρ j)(λ j
µ

s j
(η− θ

γ
)).

Using that φ j =
µλ j
γs j

and canceling common factors, the
inequality holds if and only if

λ j
θ

γ
+(λ j−ρ j)(η−

θ

γ
)> 0.

Equivalently, if and only if ηλ j > ρ j(η − θ

γ
). But the latter

inequality is obviously true, since λ j ≥ ρ j +φ j > ρ j.
The remaining of this paper focuses on an outstanding case,

defined by a single-class system, where each peer downloads
exactly one content at a time.

C. Sequential Fluid Model (SFM)

In this subsection we will study the GFM in the particular
case in which peers download exactly one video content at
a time (the single-class case - i = 1). We will call it P2P-
Sequential Fluid Model (P2P-SFM):

dx j

dt
= λ j−θ jx j(t)−min{c jx j(t),ηµ jx j(t)+µ jy j(t)+ρ jz j}

dy j

dt
= min{c jx j(t),ηµ jx j(t)+µ jy j(t)+ρ jz j}− γ jy j(t).

A direct calculation shows that:

y j
SFM
P2P =

λ j−θx j
SFM
P2P

γ j

x j
SFM
P2P = max

{
λ js j

θs j + c
,

λ j(γs j−µ)− γρz j

θ(γs j−µ)+ηγµ

}
.

P2P-SFM is a linear-switched system, i.e. a special class of
dynamic system. The global stability of a particular case has
been studied in [7]. There, the global stability is proved, but
the authors do not address any performance analysis. Recall
that an equilibrium point x of a dynamic system is stable if
there exists a positive radius R such that for any arbitrary
R < R we can find r < R that the orbit x(t) is inside the ball
B(r,x) whenever the initial point is inside it. Additionally, x is

asymptotically stable if it is stable and there is a radius R > 0
such that the orbit x(t) converges to x whenever x(0)∈B(x,R).
The reader can find these and further definitions in [10].

Theorem IV.3. The SFM is globally stable whenever γ j > 0
for all j ∈ [K].

Proof: We will sketch the main idea of the proof. The
SFM consists of K independent systems of two linear-switched
ordinary differential equations. Without loss of generality, we
can study one of those blocks (thus ommiting subscripts):

dx
dt

= λ −θx(t)−min{cx(t),ηµx(t)+µy(t)+ρz}
dy
dt

= min{cx(t),ηµx(t)+µy(t)+ρz}− γy(t).

The main idea is to prove that the evolution (x(t),y(t)) stays
forever after a finite time either in Area I (where the upload
is the bottleneck) or Area II, which are disjoint and mutually
exhaustive cases. In both cases, the local stability of linear
differential equations suffices, and is proved via elementary
linear algebra.

The reader can write-out a complete proof from [7], where
the authors study a very similar system, but with a single file
and no super-peer assistance (i.e. without the constant term
ρz in the minimum argument). It has some tricks when the
starting point is in the border of both areas. Indeed, in [7]
the authors prove global stability of a linear switched system,
which has many similarities with the SFM. For instance, if
the peer evolution x j(t) rests eventually in a linear zone,
Proposition IV.3 will assure global stability for the SFM.

We briefly review the traditional CDN for this impor-
tant single-class system (CDN Sequential Fluid Model, or
CDNSFM):

dx j

dt
= λ j−θ jx j(t)−ρ jz j

The CDNSFM is globally stable, and the peer population
converges to the rest point x j:

x j
SFM
CDN =

λ j−ρ jz j

θ j

In this case the complete evolution for the peer population can
be found: x j(t) = x j

SFM
CDN(1− e−θ t)+ x j(0).

D. Expected Waiting Times

The performance of the Peer-to-Peer Video on-demand
sequential system is never worse than its equivalent CDN
version:

Theorem IV.4. T SFM
P2P ≤ T SFM

CDN

Proof: Again, the equality holds when the download is
the system’s bottleneck. Otherwise, we will show that x j

SFM
P2P <

x j
SFM
CDN , and the result follows from the Little’s law.
We will construct an auxiliary inequality to conclude lin-

early the proof. Observe that ηµλ j > 0 >−ρ jz jθ . Adding the
term θs jλ j we have:

(θs j +ηµ)λ j > (λ js j−ρ jz j)θ .

Multiplying by the negative factor −γµ on both sides:
−γ(θs j + ηµ)λ jµ < −γ(λ js j − ρz j)µθ . Now, we add the
positive term (γθs j +ηµγ)(γλ js j − γρz j) on both sides, to
get:

(γλ js j− γρz j)(γθs j +ηµγ−µθ)>

(γθs j +ηµγ)(γλ js j− γρz j−λ jµ)

We can rewrite the last inequality as follows:

γλ js j− γρz j

γθs j +ηµγ
>

λ j(γs j−µ)− γρz j

γθs j−µθ +ηµγ

and the proof follows linearly:

x j
SFM
P2P =

λ j(γs j−µ)− γ jρ jz j

θγs j−µθ +ηµγ

<
γλ js j− γρz j

γθs j +ηµγ

=
λ js j−ρz j

θs j +ηµ

<
λ js j−ρz j

θs j
= x j

SFM
CDN .

Theorem IV.3 is implicitly used during the proof, that
assumes the system converges to the rest point, i.e.
x j(t)

SFM
P2P (t) → x j

SFM
P2P , and x j(t)

SFM
CDN → x j

SFM
CDN . In order to

understand the consistency of the obtained results we will
analyze the sensibility of the expected time T SFM

j for video j,
with respect to the network parameters: entry rates, abortion
rates, file sharing efficiency, sizes of the different video
contents and super-peers capacities. We would like to firstly
remark that the number of peers under the rest point does not
depend on the seeders aborting rate if it is large enough. In
fact, when γs j >> µ we have that

x j
SFM ≈

γ(λ js j−ρz j)

γ(θs j +ηµ)
=

λ js j−ρz j

θs j +ηµ
. (13)

In real-life networks, the seeders usually abort immediately
after completing the download, and Expression (13) is indeed
a good approximation. By Theorem IV.3, the SFM converges
to the rest point. Via the Little’s law we can find a rough
approximation for the expected download times for video j ∈
[K] in the SFM:

T SFM
j =

x j
SFM
P2P
λ j

=
1
λ j

λ js j−ρz j

θs j +ηµ
(14)

By direct derivation of Expression (14) with respect to the
network parameters, it can be observed that:

1) The waiting times are monotonically increasing with
respect to the sizes of the contents. This is consistent
with our intuitive idea that bigger files will take more
time to be downloaded.

2) If the entry rates increase, peers will wait more. This
is a common element of waiting systems with limited
resources.

3) When the abortion rates of peers θ increases, the ex-
pected waiting times are consequently reduced. It is
evident that peers that depart before downloading will
experiment lower time excursions, whereas the number
of peers under steady state is hence reduced. The depar-
ture rates play the role of a decay in the entry rate.

4) Naturally, when the sharing efficiency η is increased,
the throughput of the system increases as well, and the
mean waiting times are consequently reduced.

5) Finally, the throughput of the system increases with the
super-peers capacity ρ , and the number of replicas for
video j in the network, z j.

V. COMBINATORIAL OPTIMIZATION PROBLEM

A. Description

This section has the main problem of this paper. The goal
is to minimize the mean waiting times in a progressive video
on-demand system, assisted by super-peers managed by the
operator. For the sake of simplicity and efficiency, we will
focus on the P2P sequential fluid model (P2P-SFM), in which
closed forms can be obtained for the mean waiting time for
each video content.

Let us denote X to the random variable that represents the
class of an entry peer in the SFM. The poissonian process
with intensity rates λi imply that P(X = i) = λi

λ
, being λ the

sum rate. The mean waiting time of a user in the P2P-SFM
can be found analogously to the GFM (via the Little’s law and
conditional expectation):

E(T) =
1
λ

K

∑
j=1

x j
SFM
P2P

Accordingly, the mean waiting time is proportional to the
whole population size, so we will minimize the latter.

We must decide the number of video replicas among P
super-peers. The decision variable is a binary matrix E of size
P×K, whose entries are E(p, j) = 1 if and only if we store
video content j ∈ [K] in super-peer p ∈ [P]. We also impose
that every video content must be duplicated, for availability
and redundancy reasons. Let un be the unit column vector of
n elements (all its entries are 1), s = (s1, . . . ,sK)

t the video
sizes and S = (S1, . . . ,SP)

t the super-peers’ storage capacity.
We define the Multi-Knapsack Double Set-Cover (MK-

DSC) in matrix form as follows:

min
E

K

∑
j=1

max
{

λ js j

θs j + c
,

λ js j−ρz j

θs j +ηµ

}
s.t.

E× s≤ S

Et ×uP = z

z≥ 2uK

E(p, j) ∈ {0,1}, ∀p ∈ [P], j ∈ [K].

The objective is to minimize the mean waiting times among
all video contents. The first constraint states that super-peer’s
storage capacity cannot be exceeded. The second constraint

relates the number of replicas for video content j, named z j,
with the matrix S (summing its columns). Finally, the third
constraint imposes that each video content must be available in
the network at least twice. Observe that the objective function
depends on the variable z j = ∑p E(p, j) if and only if the
maximum function is dominated by its second argument. This
is true if and only if:

λ js j−ρz j

θs j +ηµ
>

λ js j

θs j + c
. (15)

Inequality (15) can be re-written to obtain:

2≤ z j <
λ j

ρ

c−ηµ

c+θs j
, (16)

where we added the constraint z j ≥ 2.
The following remarks are corollary of Expression (16), and

help to understand the limits in the design of a peer-assisted
on-demand service:

1) Unless the download capacity c is high enough, the peers
contribution to the system can be neglected without
sacrificing performance. It is common in practice to find
peers with c > 4µ .

2) If the super-peers’ capacity ρ is extremely high in
relation with the peers needs (popularity λ j), the peers
cooperation can be neglected again.

3) The decision variable z j is also upper-bounded. In fact,
the streaming rate is divided in the down-link once a new
video content is included in the super-peers’ storage.
Inequality (16) represents a threshold for z j.

We will solve the MK-DSC problem under different sce-
narios in order to show the strength and limitations of a P2P
assisted on-demand video service.

B. Greedy Randomized Resolution

The Multi-Knapsack Problem (MKP) is strongly NP-
Hard [11]. Our problem has a similar flavor, but we must
cover each item twice, and the profits are related with several
parameters. We present a greedy randomized resolution for
the MK-DSC. The metaheuristic can be studied in two stages.
The first one constructs a seed of our GRASP-heuristic, and
it is named GreedySeed. The second stage is a classical local
search improvement, named LocalSearch.

In GreedySeed every content is greedily stored in the two
fattest super-peers (i.e. the ones with the highest remaining
storage capacity). Note that in this multi-knapsack flavored
problem the costs are the content’s sizes s j, whereas the profits
are the reduction of the population sizes x j.

Then, we introduce the will vector W = (w1, . . . ,wK) such
that

w j =
1

s jx j
SFM
P2P

.

Note that the population size x j
SFM
P2P depends on the number

of super-peers z j seeding video content j, which a priori is

unknown. For that reason, we compute first an approximation
W ′ = (w′1, . . . ,w

′
K) for the will vector W :

w′j = w j|z j=0 = min

{
θs j + c

λ js2
j

,
θs j +ηµ

λ js2
j

}
(17)

In practical network the peer’s upload capacity is always
lower than its download, so ηµ < c, and:

w′j =
θs j +ηµ

λ js2
j

(18)

Without loss of generality, we will assume that
w′1 > w′2 > .. . > w′K (in other words, videos are numbered in
decreasing will when z j = 0).

GreedySeed is specified in Algorithm 1. The vector W ′ is
computed in Line 1, using Equation (17). The video contents
are sorted in decreasing will, in Line 2. In the iterative block
(Lines 3 to 8) each video content is assigned in turns to the two
fattest super-peers, named p1 and p2. Video content j is then
stored in both super-peers: the decision variables E(p1, j) and
E(p2, j) are turned-on in Lines 5 and 6 respectively. Finally,
the super-peer resources {Si}i=1,...,P are updated in Line 7.
Algorithm GreedySeed returns a feasible solution, contained
in the decision matrix E.

Algorithm 1 E = GreedySeed(λ ,θ ,γ.η ,s,S,µ,c,ρ)
1: W ′← FindWill(λ ,θ ,γ.η ,s,µ,c,ρ)
2: SortVideos(W ′)
3: for j = 1 TO K do
4: (p1, p2)← TwoFattest(S1, . . . ,SP)
5: E(p1, j)← 1
6: E(p2, j)← 1
7: U pdate(S1, . . . ,SP)
8: end for
9: return E

In order to improve the solution E returned by GreedySeed,
a local search improvement is introduced in a second stage.
The idea is very simple: in each step we first try to add a
new video replica. If no replica added then we try to delete an
existing replica. If no replica added or removed then finally we
try to swap two video replicas from randomly chosen super-
peers. Each step takes effect only if the movement produces
a better-and-feasible solution. The pseudo-code for this local
search stage is shown in Algorithm 2.

Algorithm 2 E∗ = LocalSearch(E)
1: (E, improve)← Add(Rand(SP,Video))
2: IF improve GO TO Line 1
3: (E, improve)← Delete(Rand(SP,Video))
4: IF improve GO TO Line 1
5: (E, improve)← Swap(Rand(SP1,V 1),Rand(SP2,V 2))
6: IF improve GO TO Line 1
7: return E

Remark V.1.
1) Functions Add, Delete and Swap work only if the new

solution is both feasible and better in terms of the
objective function.

2) The effects of Functions Add and Delete never cancel.

VI. RESULTS IN A REAL-LIFE SCENARIO

Currently, GoalBit supports high-quality Live and on-
Demand video streaming to end users. We wish to improve the
performance of the VoD distribution by adding or removing
video replicas in the system. In order to predict the behavior
of our new storage-scheduling technique, we picked up real-
life traces taken from YouTube. A PHP-script was designed
to collect some useful information as follows:

(1) We take a video URL to start.
(2) From this URL we get useful video data (size, time

online, number of views, and others).
(3) We save this data in a database.
(4) We collect all the related videos URLs, and
(5) Go back to Step (1) with a new video URL.

This process was executed during 3 days, allowing us to
have useful information of more than 50.000 videos. With
this information we estimated videos’ popularities λ j based
on the number of views and the time online. We stress the
system introducing a factor β to the vector (λ1, . . . ,λK). In
this way, we can contrast the performance of a CDN vs P2P
deployment in flash-crowded, low-populated and intermediate
scenarios. We use an abortion rate of θ = 0,1 peer per
second, file sharing efficiency of η = 0,5, download rate of
c = 1 MegaBytes per second, d = c/4, and a system with
P = 4 super-peers (or servers) with a capacity of ρ = 10
MegaBytes per second, storing K = 59000 video contents.
Figure 2 shows the estimated download time for the CDN
and P2P models (blue and red lines respectively) versus i,
where the stress factor β takes values 10i, i = 1, . . . ,15.
First, it is worth noticing that the expected time for a P2P
sequential system is never worse than the one of a traditional
CDN system, as can be predicted by Proposition IV.4.
Second, the performance of both systems is quite similar
for low-populated scenarios. Also, the time savings for
peers are remarkable in high-populated scenarios. Finally,
from last figure we can conclude that P2P system can work
similarly with less resources, while CDN has a very important
variability in its performance when increasing the number
of servers. The results suggest that peers can download the
desired video content more than five times faster than users
in a traditional CDN, in massive scenarios.

A second experiment was conducted to figure out how the
system’s performance can be affected in terms of scalability.
For a fixed popularity factor we want to find the mean waiting
times for different number of super-peers (servers). Figure 3
illustrates the average waiting time for both P2P and CDN
systems (red and blue lines respectively) versus P, where
P is the number of super-peers (servers) in the system. We

fixed the popularity factor β = 103, but a similar behavior
can be appreciated for other popularities. This suggests that
the average waiting time in the P2P system is consistently
low, whereas the CDN performance is effectively improved
distributing the load to more servers. All test where executed
in a home-PC (Intel Core i7, 8 GB RAM), getting more than
300.000 modifications during the LocalSearch phase, with a
running-time of 14 hours for each experiment.

Fig. 2. Download time for CDN and P2P when increasing popularity

 0 0

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

 10 10

 0 1 2 3 4 5 6 7 8 9 10

E
s
ti
m

a
te

d
 d

o
w

n
lo

a
d
 t
im

e
E

s
ti
m

a
te

d
 d

o
w

n
lo

a
d
 t
im

e

Popularity factor (10^i)Popularity factor (10^i)

T_P2PT_P2P

T_CDNT_CDN

Fig. 3. Download time for CDN and P2P versus the number of node-servers

 0

 1

 2

 3

 3 4 5 6 7 8 9 10

E
s
ti
m

a
te

d
 d

o
w

n
lo

a
d
 t
im

e
E

s
ti
m

a
te

d
 d

o
w

n
lo

a
d
 t
im

e

Number of super-peersNumber of super-peers

T_P2PT_P2P

T_CDNT_CDN

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented a mathematical framework for
the analysis of concurrent and sequential video on-demand
assisted applications. Under this framework, the P2P system
reaches a stationary state in real-life scenarios, and outper-
forms traditional CDN in both concurrent and sequential
services. We proved asymptotic and global stability of the
system for particular scenarios. We presented necessary and
sufficient conditions for the Sequential Fluid Model to be
asymptotically stable, and conjectured it is globally stable
whenever it is asymptotically stable.

An experimental validation of the P2P and CDN systems
and their performance is presented considering real-traces
taken from YouTube. The results are encouraging, showing
that a P2P platform can perform much more better than
traditional CDN in highly populated scenarios. Both systems
are globally stable for sequential services.

We are aware that there are several lines that deserve further
research. The global stability analysis is partially covered.
The inclusion of peers heterogeneity and free-riding would
introduce realism to the models. Here we presented a static

storage-allocation resolution, but a dynamic allocation in a
controlled system can be very useful as well. Our trends for
future work include stability and capacity analysis in video on-
demand assisted scenarios (for both sequential and concurrent
services), and the implementation of concurrent services in the
GoalBit platform.

REFERENCES

[1] B. Cohen, “Incentives build robustness in bittorrent,”
www.bramcohen.com, vol. 1, pp. 1–5, May 2003.

[2] “Bittorrent protocol specification v1.0,”
http://wiki.theory.org/BitTorrentSpecification, 2010.

[3] M. E. Bertinat, D. D. Vera, D. Padula, F. Robledo, P. Rodrı́guez-Bocca,
P. Romero, and G. Rubino, “Goalbit: The first free and open source
peer-to-peer streaming network,” in Proceedings of the 5th international
IFIP/ACM Latin American conference on Networking (LANC’09). New
York, USA: ACM, September 2009, pp. 83–93.

[4] GoalBit - The First Free and Open Source Peer-to-Peer Streaming
Network, http://goalbit.sf.net/, 2008.

[5] G. de Veciana and X. Yang, “Fairness, incentives and performance in
peer-to-peer networks,” October 2003.

[6] D. Qiu and R. Srikant, “Modeling and performance analysis of
bittorrent-like peer-to-peer networks,” in Proceedings of SIGCOMM’04,
ACM. New York, NY, USA: ACM, September 2004, pp. 367–378.

[7] D. Qiu and W. Sang, “Global stability of peer-to-peer file sharing
systems,” Comput. Commun., vol. 31, no. 2, pp. 212–219, Feb. 2008.

[8] Y. Tian, D. Wu, and K.-W. Ng, “Analyzing multiple file downloading
in bittorrent,” in Proceedings of ICPP’06. IEEE, August 2006, pp.
297–306.

[9] P. Rodrı́guez-Bocca and C. Rostagnol, “Optimal download time in a
cloud-assisted peer-to-peer video on demand service,” in Proceedings of
the International Network Optimization Conference (INOC’11). Lon-
don, UK: Springer, Lecture Notes in Computer Science, 13-16 June
2011.

[10] D. Luenberger, Introduction to dynamic systems: theory, models, and
applications. Wiley, 1979.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

