
Optimum Piece Selection Strategies for A Peer-to-Peer

Video Streaming Platform

Pablo Romero, Franco Robledo Amoza, Pablo Rodŕıguez-Bocca

Laboratorio de Probabilidad y Estad́ıstica,
Facultad de Ingenieŕıa, Universidad de la República

Julio Herrera y Reissig 565,
11300, Montevideo, Uruguay

Abstract

The Client-server architecture is still popular due to its high predictable ser-
vice and performance. However, it is not bandwidth scalable. An alternative
setup for Internet video-streaming is offered by the peer-to-peer architecture,
in which peers are servers as well as clients. Peers basically communicate in a
three-level based policy. First, they meet other peers with common interests:
this is called swarming. Then, each peer selects a small number of them for
cooperation, called the peer selection strategy. In the last step peers cooper-
ate sending pieces, defining the piece selection strategy.

This paper is focused on piece selection strategies. We propose an in-
depth analysis of a simple cooperative model. In this model the issue is to
find the best order in which pieces should be obtained. In the first stage, we
introduce a Combinatorial Optimization Problem (COP), which maximizes
the average user experience for video streaming services, and has a permu-
tation as the decision variable. Its hardness motivates us to approximately
solve it via an Ant Colony Optimization-based heuristic.

The main theoretical contributions are twofold: the introduction of a new
piece selection strategy with better results in contrast with the ones found
in the literature, and a systematic way of computing new piece selection
strategies with high quality. The practical contribution is the incorporation
of a new piece selection strategy in a live peer-to-peer streaming platform,
with remarkable performance in relation with classical strategies.

Keywords: Peer-to-peer, Piece selection strategies, COP

Preprint submitted to Computers and Operations Research February 5, 2013



1. Introduction

Internet-based multimedia systems have many different architectures, de-
pending on their sizes and on the popularity of their contents. The majority
of them have a traditional CDN (Content Delivery Network) structure [9, 34],
where a set of datacenters absorbs all the load, that is, concentrates the task
of distributing the content to the customers. This is, for instance, the case
of msnTV, YouTube, Jumptv, etc., all working with video content.

Another popular alternative consists in using the often idle capacity of the
clients to share the video distribution with the servers through the present
mature Peer to Peer (P2P) systems [24, 16, 18]. These are virtual networks
developed at the application level over the Internet infrastructure. The nodes
in the network, called peers, offer their resources to the other nodes, basically
because they all share common interests. As a consequence, as the number
of customers increases, the same happens with the global resources of the
network. For this reason, P2P networks are said to scale well.

Nowadays P2P networks play an important role because of their popu-
larity and their impact on Internet traffic. Some commercial P2P networks
for live video distribution are available, all of them with proprietary source-
codes and protocols. The most successful are PPlive [21, 15], SopCast [28],
PPstream [22], TVAnts [31] and TVUnetwork [32].

On one hand, the dynamism and freedom of peers in a P2P network
are attractive and powerful tools for the users. On the other hand they
impose many challenges on architecture design and protocols to share infor-
mation [26, 37]. The design of resilient peer-to-peer live streaming must cope
with stringent timing constraints and node-churn, which is the unpredictable
peer-arrival and departure. A recent survey on hints for a resilient design
of streaming networks is [1]. A video frame has to reach its play-out time;
otherwise the quality of experience is degraded. Moreover, many nodes only
remain connected for a few minutes [29]. Several deployments and measures
on P2P networks for live video distribution [27, 30, 2] confirm that the de-
lay and play-out losses represent the most important factors in the quality
of experience perceived by end users (see also [25, 19] for related details).
Therefore, a well-designed piece selection strategy is essential in order to ob-
tain high play-out continuity and low latency in a P2P streaming network [8].

2



There are three kinds of streaming services, that differ in generation, dis-
tribution and synchronization between peers, to know: file sharing, video
on-demand and live-streaming. In file sharing, the file is available only after
complete downloading. In video on-demand, the stream is distributed only
when users demand it. The third service is live-streaming. Here, all users
must be synchronized watching at the same instant, and the video stream
is distributed and generated simultaneously. An inspirational system for file
sharing and fast propagation is called BitTorrent [8]. There are many papers
that show BitTorrent works for both off-line and on-demand services. How-
ever, it is not well-adapted for live-streaming requirements. An enormous
effort of the scientific community is pointing to understand BitTorrent’s defi-
ciencies, and finally provide a full-scalable triple-play BitTorrent compatible
with the three streaming modes. Diverse mathematical models try to un-
derstand the behavior and scalability of BitTorrent-based systems, including
Markov Chains [38], Fluid Models [23], Branching Processes [33, 36] and
Marginal Probabilities [39], among many others.

We developed an in-depth analysis of the model stated in [39] mainly
because it is simple and captures two fundamental notions of live-streaming
scalable architectures: cooperation and synchronization. There, the authors
designed a cooperative pull process, where peers cooperate with each other
in order to recover a video streaming delivered by a single source-node. The
time is discretized, and requesting peers use a random peer selection pol-
icy to request for a new video piece. The aim is to find an optimal piece
selection strategy, that dictates the order in which pieces must be down-
loaded to achieve high continuity and low buffering times. In this paper,
we present a new strategy that has better results than previously considered
proposals. For its design, we define a Combinatorial Optimization Problem
(COP), translated into a suitable formulation of an Asymmetric Traveling
Salesman Problem (ATSP). The latter is solved meta-heuristically following
an Ant Colony Optimization (ACO) approach, which is inspired in the way
ants find the shortest path between their nests and their food [4]. We refer
the reader to [10, 12, 7, 11] for an in-depth analysis of this nature-inspired
heuristic.

This paper is organized as follows. Section 2 describes a simple model of
piece selection strategies proposed in [39]. Section 3 introduces a new family
of piece selection strategies, its basic properties and an ideal approach. Sec-

3



tion 4 contains a combinatorial optimization problem (COP) whose decision
variables are permutations. A methodology for its meta-heuristic resolution
is also developed here. This process enables to obtain new piece selection
strategies. Section 5 contrasts the new piece selection strategy with clas-
sical ones from both theoretical and empirical aspects. In the light of the
mathematical model, we present analytical comparisons between the pro-
posed strategies and previous ones. Then, the new piece selection strategy
is applied into a real peer-to-peer platform called GoalBit [14, 6], showing
the practical advantages of the new strategy proposed. Finally, Section 6
contains the main conclusions of this work.

2. Mathematical Model

The description of this mathematical model is taken from [39] and its
most modern version, detailed in [38]. Consider a closed fully-connected
P2P live-streaming system which needs to serve M identical peers. This
P2P system has a logical server S, which organizes the video content into a
stream of pieces, sent in playback order. We model this large scale network
as a discrete-time system. At each time slot, the server S uploads one video
piece to one peer uniformly chosen at random. Each piece has a sequence
number, starting from 1. Therefore, at time slot t, the server randomly
selects one peer and uploads the video piece of sequence number t to this
randomly selected peer.
Each peer needs to receive and buffer these video pieces from the P2P stream-
ing system. To achieve this, each peer holds a local buffer B, which can cache
up to N video pieces. Position B1 stores the newest video piece that the server
S is uploading in the current time slot, whereas position BN is used to store
the oldest video piece, that is currently being played back. In other words,
when server S is uploading a piece with sequence number k ≥ N , the video
piece k − N + 1 is being played back by the peer (provided that the video
piece is available in BN). At the end of each time slot, the video piece in
BN is discarded, and all pieces will be “shifted right” by one buffer position:
video piece in Bi will be shifted to Bi+1 for each i = 1, . . . , N−1. A distortion
is perceived on the screen if the peer could not obtain the current piece in
time. We assume that all peers are synchronized in the buffer consumption.
See Figure 1 for a graphical description.

Peers need to collaborate with each other to minimize their chance of
losses and delays. As a consequence, pieces can also be obtained from other

4



Figure 1: Buffer model for each peer. Position B1 has the newest video piece in the
buffer, and BN the piece being displayed at the screen.

peers in a pull-based process (i.e. pressed by downloader needs). Peer A ran-
domly selects another peer B within the network. In general, and following
some specific strategy, peer A will look at a given position in its buffer. If
it is empty, it will request peer B for this missing piece. If the initial buffer
position is already filled, the requesting peer shifts to some other position
and the same iteration is repeated until it finds an empty one. If B does
not have the corresponding piece, then A can ask for another piece. This
scheme leads either to a success, when A finally gets a video piece from B,
or to a failure, when there is no empty position in A’s buffer that can be
filled by a piece coming from B. The extension of the query is the number
of buffer positions that A needs to examine in order to get a new piece. It
is assumed that the whole query lasts no more than one time slot, and every
peer obtains no more than one piece during a time slot (the peer chosen by
the server does not ask for more video pieces).

Let us call pi the probability that a peer has the correct video piece in
Bi. By symmetry, if all peers use the same strategy, pi is independent of the
peer. In stationary state, it does not depend on time either. Consider that
a particular peer A selected a peer B to download a piece. Using a specific
piece selection strategy, suppose that at some time, the piece corresponding
to A’s buffer position Bi is missing, so, it is desired by peer A and owned
by peer B. The probability of this event is denoted by si (for the reasons
mentioned above, it only depends on i).

Definition 2.1. The buffer-map (p1, . . . , pN) is the probability that peer owns
a video chunk in the buffer-cell Bi. The number C = pN is the playback-
delivery ratio, or continuity.

In symmetric conditions, peers will have the same buffer-map pi, and the
buffering time can be measured ([39]):

Definition 2.2. The buffering-time or latency for a peer can be found by

5



L =
∑N

i=1 pi, and represents the expected time (measured in slots) a joining
peer in the system should wait in order to reach the buffer-map pi, starting
with an empty buffer.

The function mapping i ∈ {1, . . . , N − 1} into si ∈ [0, 1] is called the
selection function of the strategy. It is proved in [39] that:

p1 = 1/M, (1)

pi+1 = pi + (1− pi)pisi, i = 1, . . . , N − 1. (2)

This has a clear interpretation: the probability of being selected by the
server is one out of M . There are two mutually disjoint and exhaustive ways
to get position Bi+1 in time slot tx+i+1: by shifting with time (the peer al-
ready had the piece at position Bi in time slot tx+i) or via a query (the peer
did not have that piece, but could obtain it in time slot tx+i). The first event
has probability pi, and the second (1− pi)pisi.

Observe that the buffer-map pi is increasing in the playback direction:
p1 < p2 < . . . < pN). We will measure the performance of the system with
the playback delivery ratio and the start-up latency or buffering time.

It is worth noticing that the start-up latency can be tuned as desired in
a real platform. It is not recommended to start playback before reaching
the stationary state, because the user will experience many video gaps (poor
continuity). Additionally, it is not useful to start lately after the stationary
state. Indeed, it carries additional delays and the playback delivery ratio does
not improve. As a consequence, the start-up latency is typically configured
as the time needed to reach the stationary state.
This paper is focused on proposing a new piece selection strategy with high
continuity C, and at the same time, low latency L.

3. General Permutation-Based Strategies

3.1. Definition

A natural way to obtain strategy-diversity is to use an arbitrary permu-
tation to decide the order of a query. Let us consider the set of permutations
ΠN−1 of the first N − 1 buffer positions:

ΠN−1 = {π : {1, . . . , N − 1} 7→ {1, . . . , N − 1}, π(i) 6= π(j)∀i 6= j}.

6



For each permutation π ∈ ΠN−1 we can associate the following piece selection
strategy. Let us call A the requesting peer and B the requested one. In the
first step, A examines its buffer at position π(1). If that piece is missing and
B has it, the download is performed. Otherwise (either because peer A owns
that piece or B does not), A shifts to position π(2) and the process is repeated
(until there is either success or failure, the two only possible final results).
This scheme leads to (N−1)! different strategies. We call them permutation-
based strategies. For the strategy associated with permutation π ∈ ΠN−1,
the corresponding strategy function is related with the buffer-map:

sπ(i) = (1− 1

M
)
i−1∏
j=1

(
1− pπ(j)(1− pπ(j))

)
. (3)

Equation (3) can be interpreted in this way: peer A will ask for posi-
tion π(i) only if it was not selected by the server and every buffer position
Bi such that j < i meets one of the next two conditions: peer A already
owns the piece at position π(i), or neither A nor B owns it. It is interest-
ing to notice that other strategies could be considered, for example using
random variables to decide which position of the buffer to ask for next. In
this paper we will restrict the attention to deterministic strategies, and we
suspect that under this model, permutation-based strategies capture all of
them. Moreover, some permutation-based strategies outperform strategies
previously proposed, as we will confirm in the final results of our proposal.

The Greedy notion for this problem is always to ask for the nearest piece
of the playback. Contrarily, the Rarest First strategy (as its name predicts)
always asks for the rarest piece first (starting at position 1 and then increas-
ing towards the playback direction), trying to balance the quantity of rarest
pieces in the network. Rarest First is widely adopted by BitTorrent, with
great success for downloading purposes. We shall refer to Greedy and Rarest
First as classical strategies. Both strategies and a Mixture of them were
proposed in [39]. A brief analysis given in Appendix 7 evidences a poor per-
formance of the Rarest First strategy for streaming applications, tending to
exhibit unacceptable large latencies. Moreover, the Greedy strategy presents
poor continuity as emulations of a real platform from Section 5 indicate.
Now, let us analyze some properties of the Permutation-Based strategies,
which will guide us to outperform classical strategies and their Mixture.

7



3.2. Properties

The family of permutation-based strategies ΠN−1 enjoys many useful
properties, which guide us to define algorithms to find efficient ones. The
first is that they are a super-set that includes previous classical strategies
(and their mixture). Observe that the identity permutation π(i) = i and
the reverse one (π(i) = N − i) define the Rarest First and Greedy strategies
respectively. For any given index m : 1 ≤ m ≤ N − 1, there is a Mixture be-
tween Greedy and Rarest first, captured with the following permutation πm:

πm(i) = i, i = 1, . . . ,m;

πm(i) = N − (i−m), i = m+ 1, . . . , N − 1.

Clearly, all mixtures of the classical strategies are permutation-based strate-
gies. This trivial fact confirms that the quality of the best permutation
strategy will not decay. In fact, better strategies can be found.

Lemma 3.1. Degradation in the Selection
The sequence sπ(i) is strictly monotone decreasing.

Proof. By (3) we have that sπ(i+1) = sπ(i)[1− pπ(i)(1− pπ(i))] < sπ(i).

Definition 3.2. The Cayley distance d(π1, π2) between permutations π1 and
π2 is the minimum number of transpositions needed to obtain π2 from π1.

Let x = (x1, . . . , xN−1) and and y = (y1, . . . , yN−1) be injective real-valued
vectors. There are unique permutations πx and πy such that xπx(1) > xπx(2) >
. . . > xπx(N−1) and yπy(1) > yπy(2) > . . . > yπy(N−1)

Definition 3.3. The Cayley pseudo-distance between the vectors x and y is
d(x, y) = d(πx, πy).

Corollary 3.4. Approximation Strategy Property
For every injective real-valued sequence (x1, . . . , xN−1), there is only one per-
mutation π whose selection strategy s verifies that d(x, s) = 0.

Proof. By Lemma 3.1 the evidence is the only permutation π that complies:

xπ(1) > xπ(2) > · · · > xπ(N−1)

8



So far, we know how to approximate a given injective vector with a feasible
selection strategy, choosing an appropriate permutation strategy. However,
we want to have a full comprehension of the relation between our permutation
π and the buffer map (p1, . . . , pN), which determines both the delivery ratio
pN and buffering times by

∑N
i=1 pi.

Definition 3.5. The ideal buffer-map p′ has the lowest buffering time, subject
to perfect delivery ratio: p′i = 1

M
, ∀i ∈ {1, . . . , N − 1} and p′N = 1.

The next lemma is simple but pessimistic. It assures that there is no
strategy that can achieve perfect delivery ratio. Therefore, the ideal buffer-
map is not achievable, and users will eventually have a cut in the video
sequence.

Lemma 3.6. Unless the network has exactly one peer, the strict inequality
pN < 1 holds.

Proof. We will prove a stronger statement: pi < 1, ∀i ∈ {1, . . . , N}. By (1)
we have that p1 = 1

M
< 1, given that there is more than one peer inside the

net. This proves the base step.
Let us suppose now that ph < 1 for some h : 1 ≤ h < N , and s an arbitrary
piece selection function. Then, Equation (2) provides the next recursion:
ph+1 = ph + (1− ph)phsh. We must recall that by its definition s is a proba-
bility, so sh ≤ 1. Thus: ph+1 ≤ ph + (1− ph)ph < ph + (1− ph) = 1.

A simple link between the buffer-map and selection strategy is offered by
Equation (2).

Definition 3.7. Given a desired buffer-map p, the corresponding ideal se-
lection strategy sid can easily be obtained with a restatement of (2):

sidi =
pi+1 − pi
(1− pi)pi

,∀i ∈ {1, . . . , N − 1} . (4)

Let us recall that we search for permutations which achieve high continu-
ity and low latency. The Approximation Strategy Property leads us to invert
the search order, following these stages:

1. Choose an ideal buffer-map p = (p1, . . . , pN−1).

2. Find the corresponding ideal strategy sid with Equation (4).

3. Find the only permutation π such that sidπ(1) > sidπ(2) > . . . > sidπ(N−1).

9



Thanks to the Approximation Strategy Property, we have that the strategic
sequence s associated with permutation π verifies that d(s, sid) = 0. Hence,
we are able to “imitate” the ideal vector sid with a feasible strategic vector
s. Nevertheless, this imitation does not assure that the respective buffer-
maps are similar. In order to solve the puzzle of searching for high quality
permutations, it is necessary to evaluate the continuity and latency of a given
permutation:

Definition 3.8. For every permutation π, the Non-Linear System NLS(π)
consists in the N −1 equations (2), the N −2 equations given by (3) and the
unknowns {pi}i=2,...,N ∪ ({si}i=1...,N−1 −

{
sπ(1)

}
):

NLS(π) :


p1 = 1

M

pi+1 = pi + (1− pi)pisi, ∀i = 1, . . . , N − 1

sπ1 = 1− 1
M

sπ(i+1) = sπ(i)(pπ(i) + (1− pπ(i))
2) ∀i = 1, . . . , N − 2

Solving the non-linear system NLS(π) (for example with the Newton-
Raphson method), it is possible to evaluate the performance for any partic-
ular permutation.

In a first attempt to find an optimal permutation, we consider the control
system illustrated in Figure 2. This system shows the reverse design recently
stated: the input is the desired probability vector pi, and the output is its
best approximation p∗i . We call this serial blocks the Follower System.

 p ASP sideal NLS  p*
1 2 3 4

Figure 2: Follower System: Applies the Approximation Strategy Property (ASP)
and constructs a permutation π that follows the corresponding strategy sid (that
would get the exact probability of occupation of the input).

Several inputs were injected into the Follower System to test its perfor-
mance. An ambitious design of the input vector p is an exponential sequence

10



with unit playback continuity, because of its regularity and low values of
latency:

pεi = M
N−i
1−N , i = 1, . . . , N. (5)

However, the output can be analytically found in this case. Note that

pεi+1
= M

1
N−1pεi > pεi , and the corresponding ideal selection strategy sid

respects the following identity:

sidi+1

sidi
=

pεi+2
− pεi+1

(1− pεi+1
)pεi+1

(1− pεi)pεi
pεi+1

− pεi

=
1− pεi

1− pεi+1

> 1, ∀i ∈ {1, . . . , N − 2}

This means that the strategy to simulate is increasing, and the output
permutation is π(i) = N − i. The output falls into the Greedy strategy,
something not desirable.
Then we input the Ramp Vector shown in Figure 3(a) for the case M = 1000,
N = 40. The corresponding ideal selection strategy is not feasible, because
its magnitude exceeds the unit (it is not a probability). However, the output
shows a key element of this system. The two pairs of functions p, p∗ and s
and sid, are contrasted in Figure 3(a) and Figure 3(b) respectively.

The first observation from Figures 3(a) and 3(b) is that this Follower
System fails again when trying to follow the segmented buffer-map, and shows
that the first idea does not work as desired. However, the experience with
the Follower System shows us how a direct peak in the permutation strategy
(see Figure 3(b)) generates an abrupt change in the buffer-map (change in
slopes of Figure 3(a)). The position of the peak plays a critical role, because
if it is next to the playback the continuity will be poor (as in the case of
Greedy). On the other hand, a high latency will be carried out whenever
the peak is chosen far away from the playback (for instance, with the Rarest
First strategy). Absolute maximums are avoided in order not to get high
latencies. These observations motivate us to introduce the following:

Definition 3.9. For each pair of naturals (I, J) : I + J ≤ N − 1, there is

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

P
ro

ba
bi

lit
ie

s 
of

 O
cc

up
at

io
n

Buffer Index

p

p*

(a) Segmented buffer-map and its output.

-1

 0

 1

 2

 3

 4

 5

 0  5  10  15  20  25  30  35  40

S
tr

at
eg

ic
 F

un
ct

io
n

Buffer Index

s_ideal
s

(b) Ideal strategy sid and feasible strategy s.

Figure 3: Ideal vs. feasible buffer-maps and strategies for the case M = 1000, N = 40.

one permutation of the W -Shaped Policies, that can be expressed as follows:

π(i) = N − i, i = 1, . . . , I,

π(I + j) = j, j = 1, . . . , J

π(I + J + k) =

⌊
N + J − I

2

⌋
+

⌈
k

2

⌉
(−1)k+1,

k = 1, . . . , N − I − J − 1.

The reader can check that these permutation-based strategies present a
W -shaped buffer-priority. The I buffer-cells nearest-to-the-deadline have the
highest priority, whereas the J far-away follow in priority. Then, a zig-zag
priority is defined in the middle of the buffer (the ∧-part of the W priority).

12



Curiously, in [38] the authors analyzed the same model via Markov-Chains
in a continuity-driven fashion, and suggest another sub-family of V -Shaped
strategies:

Definition 3.10. Let k ∈ {1, . . . , N − 1} be the buffer-cell with the lowest
priority (i.e. π(N −1) = k). Then a permutation member is V -Shaped if the
priority increases as the position moves away from k.

The authors prove that the V -Shaped strategies contain the asymptoti-
cally optimal policy when the buffer size tends to infinity. The number of
V -Shaped policies is exponential with the buffer capacity N . Hence, an ex-
haustive search among the V -Shaped policies is computationally prohibitive
for large buffer sizes. Note that the number of W -Shaped members is the
cardinal {(I, J) : I + J ≤ N − 1}, or the cardinal of natural solutions to the
equality I + J + K = N − 1. By elementary combinatorics, this number is
CN+1

2 = N(N+1)
2

, polynomial in the buffer capacity N .

4. A Combinatorial Optimization Problem

In this section we define a measure of optimality for each feasible permuta-
tion strategy, and an algorithm for its resolution, which returns outstanding
strategies with high quality. Let Xπ be the random variable that counts
the number of steps needed to obtain a piece in a successful query, with the
permutation-based strategy π.

Definition 4.1. The quality of the strategy associated with permutation π is
the expected extension of a successful query: E(Xπ).

It is desirable that this expected value is as large as possible, given that an
extension means that the peers have many filled buffers (the needed time is
not a problem because it is assumed that at worst, the longest one is shorter
than a time slot). The goal of the combinatorial problem here proposed is
to maximize E(Xπ) among all possible permutation-based strategies, subject
to the constraints given in the Non-Linear System 3.8. Specifically:

max
π∈ΠN−1

E(Xπ) (6)

s.t. pi Complies with NLS(π) (7)

Finally, the following result provides a method to evaluate E(Xπ).

13



Proposition 4.2. The expected extension of a query needed to obtain a piece
with the strategy associated with permutation π ∈ ΠN−1 is:

E(Xπ) =
M

M − 1

N−1∑
i=1

i
(
pπ(i)+1 − pπ(i)

)
. (8)

Proof. Let αi be the probability of having a successful query in step i. Then:

E(Xπ) =
N−1∑
i=1

iαi

i−1∏
j=1

(1− αj)

=
N−1∑
i=1

ipπ(i)(1− pπ(i))
i−1∏
j=1

(
1− pπ(j)(1− pπ(j))

)
=

1

1− 1

M

N−1∑
i=1

ipπ(i)(1− pπ(i))sπ(i)

=
M

M − 1

N−1∑
i=1

i
(
pπ(i)+1 − pπ(i)

)
.

The Cayley distance turns to be useful in the design of a local search:

Corollary 4.3. For every π ∈ ΠN−1, define N (π) = {π∗ : d(π, π∗) = 1}
as the neighborhood set for the permutation π. Then, {N (π)}π∈ΠN−1

is a

neighborhood structure for the maximization problem maxπ∈ΠN−1
E(Xπ).

4.1. Translation of the Problem

An N -clique allows to get a bijection between a cycle and a given permu-
tation. We translate the COP into an instance of the well-known Asymmetric
Traveling Salesman Problem (ATSP [20]) using the next bijection.

Proposition 4.4. An N−clique permits to obtain a bijection between a di-
rected cycle that visits all its nodes and a permutation of {1, . . . , N − 1}.

Proof. If {v1, . . . , vN} is the set of nodes of an N -clique and π ∈ ΠN−1, then
π is in bijection with the cycle vN , vπ(1), . . . , vπ(N−1), where vN is arbitrarily
fixed as a starting node.

14



4.2. Ants-Algorithm

Ants-Algorithm can be divided into four blocks (one line per each). The
issue of Lines 1 and 2 is the translation of the problem, exploiting the bijection
stated in Proposition 4.4 translating the proposed COP into the search of a
minimum cost directed tour. In Line 1, Function InitializeEdges constructs
a weighted graph in a fully connected network with N nodes. In Line 2, the
pheromones of each edge are initialized with Function InitializePheromones.
The idea is to explore the space of permutations (cycles) via an Ant Colony
Optimization approach (ACO), in which ants are placed in an auxiliary node
N , and look for the cheapest tour. Line 3 contains precisely the ACO im-
plementation (Function ApplyACO), that returns the most visited cycle π
by these artificial ants. Finally, a concept of LocalSearch is introduced: π is
replaced iteratively by its best neighbor (the best swap) until we find a local
optimum or a number of iterations is reached. All functions are explained
bellow.

Ants-Algorithm 1 Works in four steps. Functions InitializeEdges and Ini-
tializePheromones translate the COP into an ATSP. Functions ApplyACO
and LocalSearch solved the translated problem.
Inputs:
Sub-family of permutations: SubFamily
Number of ants: ants
Number of iterations in ACO: iterations
Maximum number of iterations in the local search: n
Output:
Permutation π

1: d = InitializeEdges(ants)
2: τ = InitializePheromones(SubFamily)
3: π = ApplyACO(d, τ, iterations)
4: πout = LocalSearch(π)
5: return πout

4.2.1. Function InitializeEdges

Once we know the similarity between an oriented cycle in an N−clique
and a permutation, the first stage of Ants-Algorithm consists in initializing
the edges of the clique, which is implemented by Function InitializeEdges:

15



Function InitializeEdges 2 Initialization of the distances between the nodes
of the graph. Each ant makes a stochastic tour with a Tabu-list in order not to
visit the same node twice.
Inputs:
Number of ants: ants
Buffer size: N
Output:
Distances between nodes: Distance

1: Distance = 1N×N
2: Q = E(XRarestF irst)
3: for i = 1 to ants do
4: C(i) = V isitedCycle(Distances)
5: Distance = UpdateCost(Distances, C(i))
6: end for
7: return Distances

Distances is a square matrix of size N that stores the directed-cost from
node i to node j in its entry (i, j). In Line 1, all edges are initialized with
unit cost. Then, a quality reference (the one of Rarest First) initializes Qmax.
In Lines 3 to 6 an ant exploration block takes place. Each ant visits one
cycle, that is interpreted as one solution by means of the bijection proved
in Proposition 4.4. All cycles start by the auxiliary node N . Each ant
stochastically chooses the next node with a Tabu-List in order not to visit
the same node twice (Line 4). If an ant visited a partial path x1, . . . , xj−1,
then the jump-probability distribution for xj is:

pxj =
d(xj−1, xj)

−1∑
k≥j d(xj−1, xk)−1

, (9)

where d(i, j) = Distances(i, j) for short, and the jump-rule k ≥ j is the
Tabu-List. Finally, in Line 5 the distance of each recently visited edge is
updated regarding the recent quality E(Xπ) and the best quality so far Qmax:

d((xj−1, xj)) =
10(N − i)Qmax

E(Xπ)
(10)

The cost is defined inversely proportional to the quality of the cycle. In this
way, cheaper cycles are desirable. Let us also observe that factor 10(N − i)

16



allocates higher weights to the first edges of each cycle. In this way, the
cycles with different quality are more distinguishable.

Now, let us count the minimum number of ants needed to initialize dis-
tances between all edges. Each ant makes one cycle, and the N−clique has
CN

2 = N(N−1)
2

edges. Each ant visits a total of N − 1 edges (the last edge
(xN−1, N) of the cycle is not updated). Thus, at least N

2
ants are necessary

to visit all edges. Given that ants can repeat the visit of edges with biased
walks, it is normal to take a number of ants not lower than 2N .

4.2.2. Function InitializePheromones

Once we have the clique with asymmetric distances defined between every
pair of nodes i and j, Ants-Algorithm proceeds calling InitializePheromones,
that assigns pheromones to each edge of the clique. The goal is to prepare the
graph for a later ACO application, in which ants trace cycles with more qual-
ity. In order to initialize the pheromone of each edge, the sub-family of W -
Shaped permutations is chosen as a seed, because of its richness and variable
quality. The initialization block is identical to the one of InitializeEdges,
and involves Lines 1 and 2. Next, the block of ants’ cycles and pheromone
update is also similar to the process of initialization of distances: the main
difference is that now the cycles are chosen deterministically. Moreover, af-
ter each cycle the pheromones are updated according to the quality of the
cycle. More explicitly, in Line 5 pheromones are updated with the following
expression:

τ(π(i), π(i+ 1)) =
10(N − i)Q

Qmax

. (11)

As a consequence, the links with more pheromones are more likely to be
visited by ants during ACO application. The ladder-factors 10(N − j) were
fixed during Function InitializeEdges as well. In this way we do not give
priority to pheromones or distances beforehand.

4.2.3. ACO Implementation

Once we have defined a network with costs and pheromones of all edges
(by Functions InitializeEdges and InitializePheromones) the next step is
to solve the corresponding ATSP by an ACO-based heuristic. Given that
the exploration mechanism of the problem is similar to that applied by ants,

17



Function InitializePheromones 3 The pheromones for the later ACO applica-
tion are initialized in accordance with the experience obtained from the Sub-family
of permutations.

Inputs: Sub-Family of permutations: SubFamily(I, J)
Buffer Size: N
Output:
Pheromones of each edge: τ(i, j)

1: τ ← 1N×N
2: Qmax = QRarestF irst

3: for π ∈ SubFamily do
4: Q = Quality(π)
5: τ = UpdateCost(π,Q)
6: end for
7: return τ

its great success for ATSP from its beginnings [5], and its reduced compu-
tational effort and simplicity, the design of a meta-heuristic based on ACO
mixed with a local search is here chosen.
Before studying the details of our particular definition of FunctionApplyACO,
it is worth considering the classical parameters of the first Ant-System im-
plementation in TSP, as it can be found in the specialized literature [13, 3,
10, 11]. In all of them, the next four basic parameters are defined. One is
the number of ants to use, always present in ACO implementations. Two
parameters named α and β are the trail importance and visibility of the
path respectively. These are positive values that permit either to give more
weight to the pheromone trails or shorter steps. More specifically, if xj is the
actual node of an ant, it chooses the next node xj+1 according to the next
probabilities [11]:

pxj+1
=

τ(xj, xj+1)αd(xj, xj+1)−β∑
y∈NotCycle y τ(xj, y)αd(xj, y)−β

(12)

where τ(xi, xj) is the matrix with pheromones for each edge, d(xi, xj) the
distance between nodes xi and xj and α and β the priority parameters to
distances and pheromones respectively. Observe that an exploration with
complete visibility and discarding the trail (i.e. β > 0 and α = 0) is the
Greedy heuristic for the TSP. In this way, Ant-System proposes a trade-off

18



between greediness and the smell of ants, based on pheromones. A concept
of trail evaporation is considered as well. It plays the role of a trade-off
between the preservation of the historical information of pheromones, and the
inclusion of the new information: with ρ = 1, the whole historical information
of pheromones is replaced by the new one (complete evaporation). On the
contrary, ρ = 0 means no changes in pheromones. More specifically, each
visited edge receives, per ant, a trail proportional to the trail persistence and
quality of the tour. Given that the TSP is a minimization problem:

τ(xi, xj)
t+n = ρτ(xi, xj)

t +
m∑
k=1

Q

Lk
1(xi,xj)∈Cyclek, (13)

where LK is the length of the tour visited by ant k ∈ {1, . . . ,m}. Only the
edges visited by ants contribute to the sum (the indicator 1X is one only if X
is true), and the trails of the others receive a trail evaporation, by the factor
1− ρ. We refer the reader to [11] for an overview of the Ant-System design,
and its performance with respect to other classical meta-heuristics for the
TSP.

In order to address the nature of our problem, we apart from their original
approach in four aspects:

1. Attractor Nest : the network has an auxiliary node N , that plays the
role of an attractor nest. All ants start and finish the tour at this node.
In fact, every tour has a corresponding permutation-based policy, in
accordance with Proposition 4.4.

2. Serial walk : in the original Ant-System implementation, all ants walk
simultaneously. In this design, ants explore the network serially, and
each ant updates the trails only after finishing its tour.

3. Weighted Tours : in order to increase the diversification of the biased
tours, we avoid ants to visit the same edges in their first step. This
is an artificial guide to ants, so as to visit all edges of the network at
least one. In this way, the trail of every edge is updated at least twice.

4. Massive Population: the authors of the original implementation suggest
to use n ants (i.e. one ant per node). Here, we will consider at least
three times the number of nodes. In fact, the network has N(N − 1)/2
edges, but each ant visit exactly N edges. The probability of visiting all
edges is increasing with the population of serial ants in this single-run
system.

19



Function ApplyACO 4 The ACO implementation is based on the original
Ant-System meta-heuristic. It introduces massive populations starting from an
attractor nest, and weighted tours exploiting the previous experience of a sub-
family of W -shaped permutations.

Inputs:
Cost of each edge: d(i, j)
Pheromones of each edge: τ(i, j)
Number of ants: ants
Priority to pheromones: α
Priority to distances: β
Evaporation parameter: ρ
Output:
Most visited cycle: π

1: Qmax = E(XRarestFirst)
LatencyRarestF irst

2: for i = 1 to ants do
3: π(i) = TabuTour(τ, d, α, β)
4: τ = NewPheromones(ρ, τ,Q,Qmax)
5: end for
6: return π = MostV isitedEdge(π1, . . . , πants)

Now let us attend Function ApplyACO, in which the previous concepts
are introduced. The input parameters are the pheromones and distances
matrices (obtained by InitializeEdges and InitializePheromones) and the
parameters ants, α, β and ρ previously explained. The output is a permu-
tation π. Line 1 takes as a reference the score of the Rarest First strategy,
normalized by its latency. Observe this normalization, that is justified be-
cause of the priority to the continuity in E(Xπ): this artifice is expected to
provide solutions with more reduced latencies. Each time an ant finishes its
cycle, the pheromone trace of all recently visited edges is updated, by using
the quality normalized by latency. This is chosen because the sub-family of
W -shaped permutations has an important margin to improve latency but
continuity (this observation is confirmed by a polynomial revision of the sub-
family). The cycles are stochastic, weighting costs and pheromones according
to Equation (12). After each cycle completed by an ant, the pheromone’s
update takes place. The pheromone trails are updated regarding the quality

20



Q = E(Xπ) of the latest tour and Qmax:

τ((xj, xj+1)) = (1− ρ)τ((xj, xj+1)) + ρ
10(N − j)Q
Qmax

∑N
i=1 pi

The trail adaptation occurs only after the end of each tour. The factor
10(N − j) provides a similarity of magnitudes between pheromones and dis-
tances. Notice that the ladder-factors 10(N−j) were fixed during the network
construction in Function Edge of the Main Algorithm. In this way we do not
give priority to pheromones or distances. Finally, the best cycle is obtained
in a greedy fashion (Line 6, Function MostV isitedEdge), taking the most
visited edge in each opportunity without making cycles.

4.2.4. Computational Effort

In order to understand the trade off between the computational effort
and the quality of the solutions that Ants-Algorithm offers, let us count the
quantity of operations, taking the number of evaluations of E(Xπ) as the
basic operation. The next result summarizes the block that imposes the
largest computational effort, and the convergence order with respect to the
input N .

Theorem 4.5. Denote N the buffer size and T (N) the average time for
evaluating the quality E(Xπ). If we assume that the number of ants and the
maximum number of iterations have order O(N), then the average total time
for running Ants-Algorithm is:

τ = O(N3T (N)) (14)

Proof. Let us study the number of evaluations for each of the next blocks:
InitializeEdges, InitializePheromones, ApplyACO and LocalSearch.

In InitializeEdges, all ants make a cycle, and there is one evaluation for
each. Considering an order O(N) of ants, this block is linear with the input.

Let us focus now on InitializePheromones. This function applies as
many evaluations as the members of the W -Shaped Subfamily, which coin-
cides with the cardinality of natural solutions for the inequality: I + J ≤
N − 1. Defining K = N − J − I − 1, it is the same to count the natural
solutions to all possible values for the rest I + J + K = N − 1, that equals

21



CN+1
2 = N(N+1)

2
. Hence, Function InitializePheromones has a quadratic

number of evaluations with respect to the input N .

The same argument holds for counting the computational effort dur-
ing ApplyACO, with quadratic order.

Finally we have LocalSearch. The number of neighbors for a given per-
mutation is CN−1

2 = (N−1)(N−2)
2

. In order to find the best neighbor, it is
necessary to evaluate all neighbors in each iteration. If the number of iter-
ations is linear with N , then this block imposes the largest computational
effort, whose order is N3. If the average time for an evaluation is T (N), then
the total average time is τ = O(N3T (N)).

5. Results

5.1. Comparative Results

Let us determine Ants-Algorithm performance versus classical strate-
gies [39]. The adaptation of ACO’s parameters is based on [13], and then
tuned in accordance with our specific problem. By fixing 100 ants (which
is higher than 2N and trades computational effort) and tuning the other
three parameters (searching in 0 < ρ < 1, 0 < α < 1, 1 < β < 2),
we obtained highly competitive results implementing Ants-Algorithm with
α = 0.4, β = 1.5, ρ = 0.5 and ants = 100.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30

p
ro

b
a

b
ili

ty
 o

f 
o

c
u

p
a

ti
o

n

buffer index

Probability of occupation for different strategies

rarest first
greedy
mixture

new strategy

Figure 4: Comparison between different strategies

22



Table 1: Performance of different chunk policies.

Strategies Continuity Latency

Rarest First 0.9571 21.0011

Greedy 0.9020 4.1094

Mixture 0.9970 14.4798

Average V -Shaped 0.9670 17.6683

Ants-Algorithm 0.9998 7.9821

Figure 4 shows the result of a comparison between classical strategies
versus Ants-Algorithm strategy for the common-network parameters N = 30
and M = 100. The best Mixture can be found in this case when m = 10,
under consideration here. We carried-out an additional comparison between
our new permutation strategy and the subfamily of V -shaped strategies intro-
duced by the same authors which proposed the cooperative model [38]. We
include in Table 1 the mixture with the highest continuity as well. The Av-
erage V -Shaped refers to the average performance of one-hundred V -Shaped
policies randomly picked. Over those one-hundred samples, our permutation-
policy has better play-out continuity than 88 samples, and achieves lower la-
tencies than 86 samples. Additionally, we could not find even one V -Shaped
sample with both better continuity and latency than our permutation-based
strategy. This results confirm a highly competitive trade-off between play-
back continuity and buffering-times of our proposal. The V -Shaped members
define both high playback but high buffering times as well. In fact, the au-
thors [38] focus the design on playback continuity only.

5.2. Empirical results

5.2.1. A Real Peer-to-Peer Platform

The real P2P platform considered for the test performance of our new
piece selection strategies is GoalBit [14, 6]. BitTorrent’s success for content
downloading is well known. However, it does not comply the requirements
of video streaming applications. GoalBit maintains BitTorrent’s philosophy,
mixing the tit-for-tat strategy with optimistic unchoking, and extending the
success in the peer selection process (which is a key element in the design of
protocols for cooperation [8]). The clear weakness of BitTorrent for streaming
applications is its peer selection strategy: Rarest First. The analysis here

23



developed shows its unacceptable latencies. We refer to [14, 6] for details of
the GoalBit protocol.

5.2.2. Results in a Real-Life Scenario

We carried-out real-life experiments based on a GoalBit emulator. First,
we take real traces from a previous GoalBit distribution of a football match.
Therefore, we completely reproduce the real distribution (even with the iden-
tical protocol specification), but with a different piece selection strategy. The
emulator reproduces all but network failures.

The GoalBit protocol for cooperation keeps an urgent size of few pieces
near the playback which are always asked for first, in order to attend the
urgencies. In the non-urgent size of the buffer, three different strategies
were considered to analyze their performance: the Rarest First strategy, the
Greedy strategy and the W -Shaped member specified in Definition 3.9 with
I = 16 and J = 1. The test case considers N = 40 and 45 peers entering the
network. Figures 5, 6 and 7 show respectively the start-up latency, number
of re-bufferings and mean buffering time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  5  10  15  20  25  30  35  40  45

B
uf

fe
rin

g 
tim

e

Peer

Permutation
Rarest First
Greedy

Figure 5: Start-up latency for different piece selection strategies. The figure also
shows the iteration where each peer arrived at the network.

Figure 5 shows clearly that the Rarest First strategy has unacceptable
start-up latencies for streaming purposes. In fact, users should wait more
than one minute on average to start playing the video content following the
Rarest First strategy. The new policy is competitive in relation with Greedy,
having more reduced start-up latencies than Greedy for most of the peers.

24



 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40  45  50

N
um

be
rs

 o
f c

ut
s

Peer

Permutation
Rarest First
Greedy

Figure 6: Number of cuts presented in the video for different strategies.

 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
g
e
 t
im

e
 o

f 
cu

ts

Peer

Permutation
Rarest First
Greedy

Figure 7: Average cut time for different strategies.

These latencies last no more than five seconds, which is a reasonable waiting
time for end-users. Figure 6 illustrates the interruption of the video signal.
The Greedy strategy clearly presents interruptions more often. Most of the
peers live between four and six video interruptions when the Greedy Policy
is introduced. Rarest first trades-off video cuts with buffering times. How-
ever, this policy is not suitable for live streaming purposes because of its
start-up latencies in the order of minutes. When GoalBit follows the new
permutation-based policy, peers experience an intermediate number of video
cuts, practically always lower than the Greedy policy (more specifically, only
Peers 15 and 35 had just one cut higher than Greedy following our Permuta-
tion policy). Finally, Figure 7 shows that four peers experienced longer cuts
when our permutation strategy is introduced. However, the performance of

25



our Permutation strategy is higher in the rest of the peers, with respect to
both classical policies.

6. Conclusions and Future Work

This paper defines a new family of piece selection strategies based on per-
mutations of the linear order of piece requests. This new strategy improved
qualitatively the most frequently used piece selection strategies, named Greedy
and Rarest First, in the real P2P platform GoalBit. It achieves the best
continuity and at the same time, latency competitive with Greedy (whose
continuity is poor).
Our deterministic design of piece selection strategies consists of an ideal and a
feasible approach. The ideal approach proposes a Follower System that tries
to follow a desired buffer-map. It does not work properly, but illustrates the
playback-buffering trade-off. The feasible approach captures this trade off
with a Combinatorial Optimization Problem. The methodology for its reso-
lution is carefully elaborated, and includes a translation into an Asymmetric
Traveling Salesman Problem (ATSP), an Ant Colony exploration and local
search phase.
The weights of the ATSP were defined in accordance with biased ants tours.
The final results show that the initial COP was correctly captured via the
ATSP model, and that the Ant Colony Optimization led to better results
than the ones obtained with classical strategies. Moreover, the results were
better than those obtained by the members of the Sub-family of strategies,
which served as a seed to initialize the pheromones for the ant colony opti-
mization approach. Our future work is focused on the optimization of routing
protocols in P2P streaming networks, complemented with the design of piece
selection strategies here proposed. This should be directly applied to video
streaming networks, and particularly to the GoalBit platform.

Acknowledgments

This work was partially supported by project “Sistema eficiente de dis-
tribución de video y TV en tiempo real” of the national Uruguayan telephony
operator ANTEL, the French DGE project “P2Pim@ges”, and the French-
Uruguayan ECOS project “Réseaux sans-fil de type mesh et applications
multimédia P2P: outils pour la garantie de la qualité d’expérience”.

26



7. Appendix

7.1. Classical Strategies and a Mixture

There are two classical piece selection strategies, named Rarest First and
Greedy, and a third one defined as a mixture of them. Rarest First enjoys a
prestigious place nowadays, because of its origins with the popular BitTorrent
system [17]. With a Rarest First strategy the peer chooses to download the
pieces that are locally rarest, in order to guarantee a high piece diversity.
In a streaming context, it basically consists in selecting a missing piece that
the contacted peer has been searching initially far away from the playback
(for rare pieces, because of monotonicity of p), that is, starting from the
beginning of the buffer. This leads to the following expression for si [39]:

si = (1− 1

M
)
i−1∏
j=1

(
1− pj(1− pj)

)
. (15)

In other words, the server did not send the piece to the requesting peer
(with probability 1−1/M), and the event “the requesting peer does not have
the piece and the contacted one does” with probability pj(1−pj) is false from
buffer positions 1 to i − 1. The Greedy strategy is similar to the previous
one, but first looks for the pieces nearest to the playback. This leads to the
following expression for probability si:

si = (1− 1

M
)
N−1∏
j=i+1

(
1− pj(1− pj)

)
. (16)

It is interesting to notice that the piece selection functions si can be
widely simplified in both strategies, as stated bellow:

Proposition 7.1. The piece selection function for Rarest First complies with
the equality:

si = 1− pi, ∀i ∈ {1, . . . , N − 1} (17)

Proof. Direct by induction.

Replacing (17) in (2) the next simplified recursion for Rarest First holds:

p1 =
1

M
pi+1 = pi + pi(1− pi)2 (18)

In a similar way it can be proved a simplified expression for Greedy:

27



Proposition 7.2. The following equality holds for Greedy:

si = 1− pN + pi+1 − p1, ∀i ∈ {1, . . . , N − 1} (19)

Figure 8 shows the Rarest First and Greedy strategies graphically. A
mixture of these two strategies is possible, simply by dividing the buffer into
two parts, from positions 1 to some index value m : 1 ≤ m ≤ N , and from
m + 1 to N , and applying the Rarest First strategy in the first section and
Greedy in the second one. This combination offers a more reduced latency
than Rarest First and still possesses good continuity [39]. However, the final
results of this work show that the Mixture strategy can be improved by the
new piece selection strategies introduced here.

Figure 8: Rarest First and Greedy buffer strategies

In [39] and [35] it is stated that Greedy achieves low latency, but it is
not as scalable as Rarest First, which presents unacceptable latencies. We
will look at the performance of Rarest First. We will start showing the
convergence properties in Rarest First, which describes its scalability. On the
other hand, there is evidence that its latency makes its application to video
streaming impractical. Greedy presents poor delivery ratio, as confirmed in
the GoalBit platform.

The goodness of high continuities of Rarest First can be understood by
the next two results:

Lemma 7.3. In Rarest First:

lim
N→∞

pN = 1

Proof. By (2), sequence pi is nondecreasing. Moreover, since it represents
probabilities, it is clearly bounded by 1. Then its limit exists. If we denote
α = limN→∞ pN and take limits at both sides of (18), then:

α = α + (1− α)2α (20)

28



Consequently α = 0 or α = 1. But α 6= 0 because p1 = 1
M

and pi is
nondecreasing.

Theorem 7.4. The convergence order in Rarest First is linear, and its con-
vergence velocity is 1.

Proof. By Lemma 7.3 we know that Rarest First converges to 1. Let us de-
fine the global error by en = 1− pn. Then, by using (18) we have that:

hn =
en+1

en
=

1− pn − (pn+1 − pn)

1− pn
= 1− pn(1− pn) (21)

Lemma 3.6 assures that en > 0,∀n > 0, so hn is correctly defined. The result
follows from taking limits on both sides, and using the fact that limN→∞ pN =
1, as Lemma 7.3 guarantees.

Moreover, given that 0 < pn < 1, ∀n > 0 then 3
4
≤ hn < 1, ∀n > 0.

By taking r = maxn:1≤n<N {hn} < 1 we get that eN < rN−1e1 = rN−1(1− 1
M

).
This shows that the global error decreases at an exponential rate in Rarest
First.
There is an absolute minimum for function hn = 1− pn(1− pn) in the index
i∗ = argmin1≤i≤N{|pi− 1

2
|}. The biggest reduction in the global error occurs

in the jump between pi∗ and pi∗+1. The corresponding factor of the error
reduction is near 3

4
(or equal if p∗i = 1

2
).

The previous properties show the strength of Rarest First in achieving
high continuities. However, this strategy carries high latency, as it is ex-
plained below.
Let us consider the polynomial that expresses the jump between two consec-
utive steps (pi+1 − pi) in Rarest First:

P (x) = x(1− x)2 (22)

When restricted to the interval [0, 1], it presents a global maximum in x = 1
3
.

This is equivalent to say that when the probability of occupation reaches pi′ ≈
1
3
, the sequence pi imposes a big jump, whose magnitude is near P (1

3
) = 4

27

time slots. Moreover, all indexes bigger than i
′

impose a great amount of
latency: L =

∑N
i=1 pi, because the magnitude of p increases.

This is a first insight of the unacceptable values of Rarest First, when it is
considered in real time applications.

29



[1] O. Abboud, K. Pussep, A. Kovacevic, K. Mohr, S. Kaune, R. Steinmetz,
Enabling resilient p2p video streaming: Survey and analysis, Multimedia
Systems 17 (2011) 177–97.

[2] S. Alstrup, T. Rauhe, Introducing Octoshape - a new technology for
large-scale streaming over the Internet, Technical Report, European
Broadcasting Union (EBU), 2005.

[3] D.C. Asmar, A. Elshamli, S. Areibi, A Comparative Assessment of
ACO Algorithms Within a TSP Environment, In the 4th International
Conference on Engineering Applications and Computational Algorithms
(2005).

[4] R. Beckers, J. Deneubourg, S. Goss, Trails and U-turns in the selection
of the shortest path by the ant Lasius Niger, Journal of Theoretical
Biology 159 (1992) 397–415.

[5] H. Bersini, M. Dorigo, S. Langerman, G. Seront, L.M. Gambardella,
Results of the first international contest on evolutionary optimization.,
in: International Conference on Evolutionary Computation, IEEE Press,
1996, pp. 611–5.

[6] M.E. Bertinat, D.D. Vera, D. Padula, F. Robledo, P. Rodŕıguez-Bocca,
P. Romero, G. Rubino, GoalBit: The First Free and Open Source Peer-
to-Peer Streaming Network, in: To appear in Proceedings of the 5th
international IFIP/ACM Latin American conference on Networking,
ACM, New York, USA, 2009.

[7] C. Blum, Ant colony optimization: Introduction and recent trends,
Physics of life Reviews 2 (october 2005) 353–73.

[8] B. Cohen, Incentives Build Robustness in BitTorrent,
www.bramcohen.com 1 (2003) 1–5.

[9] C.D. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, J.E.V. der
Merwe, C.J. Sreenan, Enhanced Streaming Services in a Content Dis-
tribution Network, IEEE Internet Computing 5 (2001) 66–75.

[10] M. Dorigo, M. Birattari, T. Stutzle, Artificial Ants as a Computational
Intelligence Technique, Technical Report 23, Institut de Recherches In-
terdisciplinaires, Universit Libre de Bruxelles, 2006.

30



[11] M. Dorigo, L.M. Gambardella, Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem, IEEE Trans-
actions on Evolutionary Computation 1 (1997) 53–66.

[12] M. Dorigo, T. Stutzle, Ant Colony Optimization., MIT Press, 2004.

[13] H. Duan, G. Ma, S. Liu, Experimental Study of the Adjustable Param-
eters in Basic Ant Colony Optimization Algorithm, IEEE Congress on
Evolutionary Computation 1 (2007) 149–56.

[14] GoalBit - The First Free and Open Source Peer-to-Peer Streaming Net-
work. Home Page, http://goalbit.sf.net/, 2008.

[15] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, Insights into PPLive: A
Measurement Study of a Large-Scale P2P IPTV System, in: In Proc. of
IPTV Workshop, International World Wide Web Conference.

[16] S. Horovitz, D. Dolev, LiteLoad: Content unaware routing for localizing
P2P protocols, in: Proceeding of the IEEE International Symposium on
Parallel and Distributed Processing (IPDPS’08), Miami, USA, pp. 1–8.

[17] A. Legout, G. Urvoy-Keller, P. Michiardi, Rarest first and choke algo-
rithms are enough, in: IMC ’06: Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, ACM, New York, NY,
USA, 2006, pp. 203–16.

[18] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, Z. Xu, Peer-to-Peer Computing, Technical Re-
port HPL-2002-57, HP Labs, 2002.

[19] S. Mohamed, G. Rubino, A Study of Real–time Packet Video Quality
Using Random Neural Networks, IEEE Transactions On Circuits and
Systems for Video Technology 12 (2002) 1071–83.

[20] T. Oncan, Y.K. Altynel, G. Laporte, A comparative analysis of sev-
eral asymmetric traveling salesman problem formulations, Computers
& Operations Research. 36 (2009) 637–54.

[21] PPLive Home page, http://www.pplive.com, 2007.

[22] PPStream home page, http://www.ppstream.com/, 2007.

31



[23] D. Qiu, R. Srikant, Modeling and performance analysis of bittorrent-like
peer-to-peer networks, SIGCOMM Comput. Commun. Rev. 34 (2004)
367–78.

[24] P. Rodŕıguez-Bocca, Redes de Contenido: Taxonomı́a y Modelos de
evaluación y diseño de los mecanismos de descubrimiento de contenido.,
Master’s thesis, Universidad de la República, Facultad de Ingenieŕıa,
Intituto de Computación. ISSN 0797-6410 INCO-RT-05-13, Montevideo,
Uruguay, 2005.

[25] P. Rodŕıguez-Bocca, Quality-centric design of Peer-to-Peer systems
for live-video broadcasting, Ph.D. thesis, INRIA/IRISA, Université de
Rennes I, Rennes, France, 2008.

[26] S. Saroiu, P.K. Gummadi, S.D. Gribble, A Measurement Study of Peer-
to-Peer File Sharing Systems, in: Multimedia Computing and Network-
ing.

[27] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, S. Tewari, Will IPTV
ride the peer-to-peer stream?, Communications Magazine, IEEE 45
(2007) 86–92.

[28] SopCast - Free P2P internet TV, http://www.sopcast.org, 2007.

[29] K. Sripanidkulchai, B. Maggs, H. Zhang, An analysis of live stream-
ing workloads on the internet, in: IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, ACM Press,
New York, NY, USA, 2004, pp. 41–54.

[30] S. Tewari, L. Kleinrock, Analytical Model for BitTorrent-based Live
Video Streaming, in: 4th IEEE Consumer Communications and Net-
working Conference (CCNC’07), Las Vegas, NV, pp. 976–80.

[31] TVAnts home page, http://cache.tvants.com/, 2007.

[32] TVUnetworks home page, http://tvunetworks.com/, 2007.

[33] G.D. Veciana, X. Yang, Fairness, incentives and performance in peer-
to-peer networks, in: In the Forty-first Annual Allerton Conference on
Communication, Control and Computing.

32



[34] S. Wee, W. Tan, J. Apostolopoulos, S. Roy, System design and archi-
tecture of a mobile streaming media content delivery network (msdcdn),
Technical Report, Streaming Media Systems Group, HP-Labs, 2003.

[35] C.J. Wu, C.Y. Li, J.M. Ho, Improving the Download Time of BitTorrent-
like Systems, in: IEEE International Conference on Communications
2007 (ICC 2007), Glasgow, Scotland, pp. 1125–9.

[36] X. Yang, G. de Veciana, Service capacity of peer to peer networks, IN-
FOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Com-
puter and Communications Societies, volume 4, pp. 2242–2252 vol.4.

[37] D. Zeinalipour-Yatzi, T. Folias, A quantitative analysis of the gnutella
network traffic, Technical Report, Department of Computer Science,
University of California, Riverside, 2002.

[38] B.Q. Zhao, J.C.S. Lui, D.M. Chiu, Exploring the optimal chunk se-
lection policy for data-driven p2p streaming systems, in: Peer-to-Peer
Computing, pp. 271–80.

[39] Y. Zhou, D.M. Chiu, J. Lui, A Simple Model for Analyzing P2P Stream-
ing Protocols, in: Proceeding of the IEEE International Conference on
Network Protocols (ICNP’07), Beijing, China, pp. 226–35.

33


