
A mathematical programming formulation of optimal
cache expiration dates in content networks

Pablo Rodríguez-Bocca
Universidad de la República, Uruguay

J. Herrera y Reissig 565
 Montevideo, Uruguay

+598-2-7114244 ext. 113

prbocca@fing.edu.uy

Héctor Cancela
Universidad de la República, Uruguay

J. Herrera y Reissig 565
 Montevideo, Uruguay

+598-2-7114244 ext. 113

cancela@fing.edu.uy

ABSTRACT
One of the fundamental decisions in content networks is how the
information about the existing contents is deployed and accessed.
In particular, there are two main alternatives, either to publish the
information when contents are changed, or to search for the
contents when a query is received. Even if some networks only
use one of these alternatives, in general it is better to employ a
mix of both strategies. This implies evaluating the tradeoff
between these alternatives, in order to decide the characteristics of
the mix. In this work we develop a simplified model of the costs
and restrictions associated with cache expiration dates in a cache
node in a content network; these expiration dates regulate the
proportion of queries which will be answered on the basis of
published information, vs. those which will give rise to additional
searches in the network backbone. Based on this model, we
present a mathematical programming formulation which can be
useful to determine the optimal cache expiration dates in order to
maximize the total information discovered, while respecting the
operational constraints of the network.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
This is just an example, please use the correct category and
subject descriptors for your submission. The ACM Computing
Classification Scheme: http://www.acm.org/class/1998/

General Terms
Performance, Design.

Keywords
Peer-to-peer networks, mathematical programming, optimization.

1. INTRODUCTION
A content network is a network where the addressing and the
routing of the information is based on the content description,
instead of on its physical or logical location [7][8][10]. Content
networks are usually virtual networks based over the IP
infrastructure of Internet or of a corporative network, and use
mechanisms to allow accessing a content when there is no fixed,
single, link between the content and the host or the hosts where
this content is located. Even more, the content is usually subject
to re-allocations, replications, and even deletions from the
different nodes of the network.

In the last years many different kinds of content networks have
been developed and deployed in widely varying contexts: they
include peer-to-peer networks, collaborative networks,
cooperative Web caching, content distribution networks,
subscribe-publish networks, content-based sensor networks,
backup networks, distributed computing, instant messaging, and
multiplayer games. The ability of content networks to take into
account different application requirements and to gracefully scale
with the number of users have been a main factor in this growth
[12][13][14].

As we have previously discussed, in a content network the
addressing and routing are based on the content description,
instead of on its location. This means that every content network
is actually a knowledge network, where the knowledge is the
information about the location of the nodes where each specific
content is to be found: this is "meta-information", in the sense of
being the information about the information contents themselves.

The objective of the network is to be able to answer each content
query with the most complete possible set of nodes where this
content is to be found; this corresponds to discover the content
location in the most effective and efficient possible way.

There are two main strategies to discover the meta-information,
namely publication and search. By publication we mean the
process by which a network node unrequestedly sends meta-
information it possesses to the remaining nodes. By search we
mean the process by which a node asks the remaining ones to
send it the meta-information they possess. By analogy with
logistics, we can say that publication is an "information push"
strategy, and search an "information pull" strategy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LANC’05, October 10–12, 2005, Cali, Colombia.
© 2005 ACM 1-59593-008-6/05/0010…$5.00.

As both nodes and contents are continuously going in and out of
the network, the task of maintaining updated the network meta-

http://www.acm.org/class/1998/

information is very difficult and represents an important
communication cost. Both publishing and search can contribute
towards this task, but their relative efficiency varies, so that there
is a tradeoff between their frequency and modality of application.
In this context, cache nodes are used to hold the available meta-
information; as this information is continuously getting outdated,
the cache nodes must decide when to discard it, which means
increasing communication overhead for the sake of improving the
quality of the answers.

These last years have seen an explosion on the design and
deployment of different kinds of content networks, in most cases
without a clear understanding of the interaction between the
network components neither of the tuning of the network
architecture and parameters to ensure robustness and scalability
and to improve performances. This in turn has lead to a still small
but growing number of empirical studies (based on large number
of observations of a given network activity) [6][14][15][16][20],
and of analytical models which can be fitted to the observations in
order to better understand and eventually to predict different
aspects of network behavior [3][12][13][17][18].

In this work, we develop a simplified model of a content network,
and in particular of the number of correct answers to a query as a
function of the information expiration times used at the cache
nodes, presented in Section 2; to the best of our knowledge, this is
an aspect that has not been previously treated analytically in the
literature. This model gives rise to a mathematical programming
formulation discussed in Section 3, which can be used to find the
expiration times maximizing the correct answers to the queries
received; a numerical illustration is shown in Section 4, followed
by some conclusions in Section 5.

2. CONTENT CACHING PROBLEM
FORMULATION
This section formalizes the problem of caching meta-information
in a content network in order to maximize the number of correct
answers to the queries, while respecting the bandwidth
constraints; this will be our Content Caching Problem (CCP).

2.1 Network components description
We will look at the content network as composed of source nodes
and querying nodes (which may be the same), of cache nodes
(also called aggregation nodes), and of a backbone (which will
not be further modeled); a graphical representation can be seen in
Figure 1. This division is actually virtual, as a same physical node
may act at the same time as a source node, a querying node, a
cache node, and a backbone node. We will also separately model
the contents of the network (which will belong to a set C). The
content network is considered to be in steady state, so that we will
not need to explicitly model the time; this assumption is justified
by the fact that the time rate at which contents appear and
disappear, and cache expiration times, are usually much faster
than the times by which the statistical properties of the user
population change.

Figure 1: Simplified view of a content network

The users of the network will query about each content k with a
different query frequency . We suppose that the number of
users is large enough so that for each content, the queries follow a
Poisson process of rate This means that , the number of
queries for content k in a given time interval T, will have the
following distribution:

kf

kf ()TSk

()() () +
−

ℜ∈∀ℵ∈∀∈∀== TnCk
n

eTf
nTSp

Tfn
k

k

k

,,
!

.

Also , the time between two consecutive queries, will be an

exponentially distributed random variable with parameter :
kST

kf

()
⎩
⎨
⎧

<
≥−

=≤
−

 0 t0
0 t1 tf

S

k

k

etTp ,

{ }
k

SS fTT
kk

1=Ε= .

The contents will be located in the source nodes; each source
node decides when to start and when to end lodging the different
contents. This leads to a different birth-and-death process for each
content k, which we will suppose will be of ∞M/M/ type and
parameters kλ and kμ (respectively, the rates of start and end of
lodgement of content k at a source node); if we suppose that at
moment the network is in stationary state, and 0t ()0tAk is the

(random) number of source nodes lodging content k at we
have that:

0t

()() .,
!0 ℵ∈∀∈∀
⎟
⎠
⎞⎜

⎝
⎛

==

−

nCk
n

e
ntAp

k
kn

k

k

k

μ
λ

μ
λ

.

From this distribution, we can find the expected number of source
nodes lodging content k (i.e., the expected number of times this
content will be replicated in the network):

(){ } ()()

() ()

.

!1!1

.

1

1

1

0
00

k

k

k

k

n

n

k

k

k

k

n

n

k

k

n
kkk

k
k

k
k

k
k

k
k

ee

n
e

n

e

ntApntAA

μ
λ

μ
λ

μ
λ

μ
λμ

λ

μ
λ

μ
λ

μ
λ

μ
λ

=⎟
⎠
⎞⎜

⎝
⎛=

=
−

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛=

−

⎟
⎠
⎞⎜

⎝
⎛

=

===Ε=

−

≥

−

−

≥

−

≥
=

∑∑

∑

The only routing nodes we will consider are aggregation nodes. In
general, querying nodes are not able to search directly in the
backbone, and usually connect to at least one aggregation node in
order to route their queries. The aggregation node concentrates all
queries of its connected nodes and consults the backbone when it
is not able to directly answer the queries received. One of the
objectives of having aggregation nodes is to minimize the number
of searches in the backbone; to do this, aggregation nodes
maintain a cache of the results of recent queries, and are then also
called cache nodes. The behavior of a cache node is very simple:
when a query over content k arrives, if the answer is present in the
cache it is returned; otherwise, the cache node starts a search in
the backbone to obtain the information and answer the query; this
information is then stored in the cache, for a prefixed time ,
afterwards it expires.

kd

One of the reasons for deleting out-dated information is that the
results of a query will only be valid for a given time interval, as
the nodes which hosted this content can disconnect or delete the
content of interest, and new nodes can connect or start to publish
the content. Suppose the cache node queried the backbone at time

 for content k and received in answer the information about
 source nodes which hosted this content at that time. From

then on, we can consider that the number of valid locations for
content k known to the cache node will evolve like a stochastic
pure-death process, with death parameter

0t
()0tAk

kμ , as the source
nodes will disconnect or delete the contents, until a new query is
routed to the backbone.

Queries

Backbone searches

Time

Answer is in the cache

Answer is not in the cache

Queries

Backbone searches

Figure 2 – cyclic behavior at cache nodes.

We can then compute the mean number of valid locations known
by a cache node at time + t when the last query answered by

the backbone has been at time :
0t

0t

()() ()

()() () ()

()

.

!1

!1
.

.

query backbonelast the
after units time locations
content validofnumber mean

1

1
10

0

0
000

t

k

kt

k

k

n

n

k

k

t

k

k

n

t

n

k

k

n
Vk

n
VVk

kk
k

kk
k

kk
k

k

k
k

k

kk

eeee

n
ee

e
n

e
tTpntApn

tTttTpntApn

t

μμ
λ

μμ
λ

μμ
λ

μ

μ
λ

μ
λ

μ
λ

μ
λ

μ
λ

μ
λ

−−−

≥

−

−−

≥

−

−

≥

≥

=⎟
⎠
⎞⎜

⎝
⎛=

=
−

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛=

=
−

⎟
⎠
⎞⎜

⎝
⎛

=>==

=>+>==

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑

∑∑

∑

The behavior of a cache node is then essentially composed of a
repeated cycle, which starts with a first query of content k,
leading to a backbone search; then a period of fixed duration ,
where all queries arriving are answered with the information
contained in the cache memory; and then, after the expiration of
the cache contents, a period of random duration, until a new query
for content k arrives, re-starting all the cycle again. By the
hypothesis of Poisson arrivals for queries, this last period follows
an exponential distribution, of parameter (the query
frequency). Figure 2 shows a scheme of this cycle, where we
denote by the period where the contents are cached, and by the
period where the contents are not cached.

kd

kf

kC dT
k
=

kNCT The

mean length of the cycle is then
k

k fd 1+ ; in each cycle there

is only a single search in the backbone (when the cycle starts),
this can be used to compute the rate of backbone searches as
follows:

()

.
11

1
 timecycle total

searches # unit per time searches backbone

kk

k

k
k

fd
f

fd +
=

+
=

==

As the query frequency is fixed externally, the only free variables
we can adjust at cache nodes to define their behavior are the
content expiration dates for every content k. kd

2.2 Bandwidth constraints
Cache nodes have input and output bandwidth constraints, which
can limit the number of queries they can receive, process, answer
and eventually pass on to the backbone. We will try to formulate

these constraints in terms of the previously defined parameters
and of the free variables . kd

We denote by and the maximum input and
output bandwidth a cache node is able to employ. We suppose
that each query the cache nodes receives employs

INBW OUTBW

Sβ bytes in

mean, and that its answer employs Sα bytes per location
information to be sent (then, the answer varies in size depending
the number of known node locations where a content is stored).
We also use as additional parameters Bβ ,the message size of

queries to be sent to the backbone, and Bα which is the message
size per location of the answers received from the backbone.

Then, the input bandwidth to be used by the cache node
corresponds to the sum of the size of the queries received from the
querying nodes (at a rate per content k), and of the answers
sent by the backbone when queried about a specific content. As

we know that the backbone search frequency is

kf

kk

k

fd
f

+1
, and

the mean number of content k locations in the backbone is

k

k
kA μ

λ= , we arrive to the following formula:

() ∑∑
∈∈ +

+=
Ck

k
kk

k
B

Ck
kS A

fd
f

f
1

bandwidth input αβ .

Similarly, the output bandwidth corresponds to the sum of the
queries transmitted to the backbone plus the content locations
answered to the querying nodes in response to their queries,
leading to the formulation

 () ∑∑
∈∈ +

+=
Ck kk

k
B

Ck
kkS fd

f
Af

1
bandwidthoutput βα .

We can then mathematically formulate the bandwidth constraints
as follows:

IN
Ck

k
kk

k
B

Ck
kS BWA

fd
ff ≤

+
+ ∑∑

∈∈ 1
αβ ,

OUT
Ck kk

k
B

Ck
kkS BW

fd
fAf ≤

+
+ ∑∑

∈∈ 1
βα .

2.3 Expected number of correct answers
The network primary objective is to be able to give the most
complete correct information to the queries received. To
formalize this objective, we develop an expression for the number
of correct answers (i.e., the number of valid content locations)
answered to the querying nodes. In particular, if we denote by

the random variable corresponding to the number of content
locations answered to a query for content k, we want to compute
its expected value

kR

kR . We know that during a cache node cycle,
there will be at least one query (at the start of the cycle), and a
random number of additional

queries during the period where the content locations are stored in
the cache, of duration (as when the cache contents expire, the
first query arriving will lead to the start of a new cycle). This
leads to the following formulation for each content k:

kd

{ }
{ } ()

{ } ()

{ } { }
().queries add.

1

queries add.

queries additional 0

queries additional queries additional

1

1
,,

,

0

∑
∑

∑

≥

=

≥

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

Ε+Ε

+Ε=

=Ε=

=Ε=

n

n

m
CmkNCk

NCk

n
k

kk

np
n

nRR

pR

npnR
RR

where is the answer to the initial query (transmitted to the
backbone, and whose answers are stored in the cache), and

 are the answers to the following queries during the

time period starting with the first query and of duration .

NCkR ,

CnkCk RR ,1, ...

kd

The expected number of correct responses to the first query is
exactly the expected number of nodes hosting the contents,

{ }
k

k
kNCk AR

μ
λ

==Ε , .

For the following queries, we use on one hand the fact that query
arrivals follow a Poisson process of rate , so that the
probability of observing n arrivals during a time interval of
length is :

kf

kd

()() () +
−

ℜ∈∀ℵ∈∀∈∀== k

dfn
kk

kk dnCk
n

edfndSp
kk

,,
!

.

On the other hand, it is a well-known fact (see for instance the
discussion in [5]) that the distribution of the arrivals of a Poisson
process within a fixed interval follow an uniform distribution.
This means that the expected mean value of the number of
answers received to the queries during this interval will be equal
to the expected value of valid content locations in the interval
(i.e., the expectation over the queries will be equal to the
expectation over the time interval, a PASTA – Poisson Arrivals
See Time Averages result). As the number of valid know

locations known at time t after the last query is equal to t

k

k ke μ

μ
λ − ,

then its expectation over the interval of duration is kd

()

1

.

2

0
2

0

kk

k

k
k

k

d

kk

k

k

d

t

k

k

k

d
t

k

k

e
d

d

e

d

dte

μ

μμ

μ
λ

μ
λ

μ
λ

−

−−

−=

=

−

=
∫

.

Then we have that:

{ }

(]

() . 1

, interval timein the node cache

 theknown to locations validofnumber mean

queries

2

00

1
,

Cke
d

n

dtt
n

nR

kk d

kk

k

k

n

m
Cmk

∈∀−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=Ε

−

=
∑

μ

μ
λ

Combining all these results, we find

{ } { } ()

{ } ()

{ } { }
()

()
()

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

−+
=

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

Ε+Ε

+Ε=

=Ε=Ε=

∑

∑
∑

∑

≥

−
−

≥

=

≥

0

2

1

1
,,

,

0

!1

1

queries
1

queries

queries 0

queries queries

n

dfn
kk

d

kk

k

k

k

n

n

m
CmkNCk

NCk

n
kkk

n
edf

n

e
d

n

np
n

nRR

pR

npnRRR

kk

kkμ

μ
λ

μ
λ

()
() () ()

()
() () ()

() () ()(.11111

111

!1
1

!1

2

2

0
2

0

⎥
⎦

⎤
⎢
⎣

⎡
−−−−+−=

=⎥
⎦

⎤
⎢
⎣

⎡ −
−−+

−
=

=
+

−+
+

=

−−−−

−−−

≥

−−

≥

− ∑∑

kkkkkkkk

kk
kkkkkk

kk
kk

kkkkkk

ddf

k

d
k

df
k

kkk

k

kk

df
dfddf

kk

k

kk

df
df

k

k

n

n
kkddf

kk

k

n

n
kkdf

k

k

ee
d

efe
df

df
eeee

ddf
ee

n
dfnee

dn
dfe

μμ

μ

μ

μ
μ
λ

μ
λ

μ
λ

μ
λ

μ
λ

)

Finally, we can compute the expected number of correct answers
taking into account all contents; this is the function we would like
to maximize:

() () ()(∑

∑

∈

−−−−

∈

⎥
⎦

⎤
⎢
⎣

⎡
−−−−+−=

=

Ck

ddf

k

d
k

df
k

kk

k

Ck
kk

kkkkkkkk ee
d

efe
d

fR

μμμ
μ
λ

11111
2

)

3. MATHEMATICAL PROGRAMMING
FORMULATION
If we put together the network objective and the bandwidth
restrictions discussed in the previous section, we arrive to the
following formulation of our CCP problem:

() () ()(

s.t.

IN
Ck k

k

kk

k
B

Ck
kS BW

fd
ff ≤

+
+ ∑∑

∈∈ μ
λαβ

1

OUT
Ck kk

k
B

Ck k

k
kS BW

fd
ff ≤

+
+ ∑∑

∈∈ 1
β

μ
λ

α

 Cfor ariables,decision v ∈ℜ∈ + kd k

CkBWBWf OUTINBSBSkkk ∈∀ℜ∈ + ,,,,,,,, ββααμλ .

This is a non-linear optimization problem, both in the restrictions
and in the objective function. If we study it in detail, we can see
that both the feasible solution space and the objective function are
convex. As the problem is stated as a maximization one, a convex
objective function will in general lead to multiple local optima.

3.1 Content class based alternative
formulation.
In most cases, content networks manage a very large number of
different contents. These means that the previous formulation will
have a large class of decision variables , an additional
difficulty for the numerical solution of the problem. On the other
hand, for simplicity design reasons, the networks will in general
treat in the same way contents that have similar characteristics. It
is then possible to group all contents in a certain number of
content classes, such that all contents within a class have
relatively homogenous characteristics.

kd

Formalizing,, we suppose that all contents Cc∈ are grouped
into K content classes, such that if two contents belong to the
same class, all their parameters are identical:

KCCCC ∪∪= ...21

[]
⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

=

⇒
⎭
⎬
⎫

∈∀

∈∀

ji

ji

ji

cc

cc

cc
kji

ff

Kk

Ccc

μμ

λλ
..1

,

The size of class k , denoted by , is the number of contents of

this class:
kl

[]Kklk =Ck ..1∈∀ . The total number of contents in

the network is then: ∑∑
∈∈

==
Kk

k
Kk

k lCC

We now define the Content Class Caching Problem. We
enumerate the parameters of the problem (and give their
dimensional units between brackets):

)

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧
⎥
⎦

⎤
⎢
⎣

⎡
−−−−+−

∑

∑

∈

∈

−−−−

ℜ∈ +

Ck
k

k

k

Ck

ddf

k

d
k

df
k

kk

k

d
f

ee
d

efe
d

max

kkkkkkkk

k

μ
λ

μ
μ
λ μμ 111112

• : number of contents belonging to class (kl k [] 1=kl).

• : query rate for class k contents (kf [] .sec
1=kf).

• kλ : rate for source arrival for class contents

(

k

[] .sec
1

k =λ) .

• kμ : rate for content deletion in sources for class

contents. (

k

[] .sec
1

k =μ) .

• Sα : size per location answered in response to a content

query ([] bytesS =α).

• Bα : size per location answered in response to a backbone

search ([] bytesB =α).

• Sβ : size of a content query packet ([] bytesS =β).

• Bβ : size of a backbone search packet ([] bytesB =β).

• : input and output bandwidth restrictions in

the cache node (

OUTIN BWBW ,

[] [] .sec
bytesBWBW OUTIN ==

).

• : cache expiration times for class contents.

()
kd k
[] sec.k =d

The problem is then formalized as follows:

() () ()()

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧
⎥
⎦

⎤
⎢
⎣

⎡
−−−−+−

∑

∑

∈

∈

−−−−

ℜ∈ +

Kk
kk

k

k

Kk

ddf

k

d
k

df
k

kk

kk

d
fl

ee
d

efe
d

l

max

kkkkkkkk

k

μ
λ

μ
μ
λ μμ 111112

subject to :

IN
Kk k

k

kk

kk
B

Kk
kkS BW

fd
flfl ≤

+
+ ∑∑

∈∈ μ
λαβ

1

OUT
Kk kk

kk
B

Kk k

k
kkS BW

fd
fl

fl ≤
+

+ ∑∑
∈∈ 1

β
μ
λ

α

ariablesdecision v k Kd k ∈∀ℜ∈ +

 . KBWBWfl OUTINBSBSkkkk ∈∀ℜ∈ + k ,,,,,,,,, ββααμλ

4. NUMERICAL ILLUSTRATION
4.1 Content caching problem case study.
In this section we present a numerical illustration over a case
study, where the data was generated with information available in
different literature sources especially referring to Gnutella or
similar peer-to-peer (P2P) file sharing networks [1][4][9][15][19].
We have chosen P2P networks which are a specially successful
category of content networks, for which there is also much
quantitative information available.

Table 1: parameter values for the case study.

Table 1 summarizes the main parameters of the case study. We
generated ten instances of this detailed case study (using a
random number generator with different seeds), including the
data for the 878691 different contents (which correspond to the
number of Gnutella contents in the study by Chu [1]), where the
distributions for the query frequency follow a modified Pareto
distribution law taking into account the "fetch-at-most-once"
effect (see [4] for a discussion of this observed network behavior).
Regarding the frequency of arrival of new storage locations for
each content, we suppose that it is linearly related to the query
frequency, following the hypothesis mostly used in the literature
(an exception is the work by Qin [9] which also studies a square
root dependency). For the bandwidth constraints, we suppose that
the cache nodes will be equipped with an ADSL 2/1 Mbps
connection as reference value.

4.2 Class content caching problem case
study.
As we discussed in Section 3, it is next to impossible to directly
solve the CCP problem generated, a non-linear problem in 878691
independent variables (one for each content). As an alternative,
we cluster the contents into a small number of homogeneous
content classes, and solve the resulting CCCP problem. As it is
not a-priori clear what is the best number of classes to use, we
experimented with five different values, namely 2, 8, 16, 32, and
128 classes, for each of the 10 different CCP problems generated.

Parameters Values

T : time units 1 hour
C : number of different contents 878691

f : average content query rate 0.037938251 hr-1

maxf : maximum content query
rate

1000 hr-1

λ : average content storage rate 11.09749966 hr-1

μ : average content location
validity rate

1 hr-1

max
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
λ

: maximum allowed

number of locations answered in
response to a content query

200

Sα : size of a the answer to a
content query

100 bytes

Bα : size of the answer of a
backbone search

310 bytes

Sβ : size of a content query 94 bytes

Bβ : size of a backbone search
packet

291.4 bytes

INBW : input bandwidth 921600000
bytes/hr.

OUTBW : output bandwidth 460800000
bytes/hr.

In order to solve the different problems formulated, we used
AMPL, an algebraic modeling language for mathematical
programming problems, in conjunction with MINOS (version
5.5), an optimization solver. In the Appendix, we give some
examples of how the optimization problem is formulated in terms
of the AMPL language, and of the commands to be used to find a
numerical solution.

All experiments were run on a PIII 800 MHz computer, with 320
Mb RAM space. The results obtained are summarized in Table 2.
The objective function has been normalized, using a tight upper
bound, so that the values can be compared directly. Among other
observations, we can see that when the number of classes grow,
the available resources are being increasingly used. Also, the
computational times required to solve the model grow, albeit they
remain very modest.

Number
of

content
classes

Normalized
Objective
function

Execution
time (secs.)

Input
bandwidth
employed
(bytes/hr)

Output
bandwidth
employed
(bytes/hr)

2 0.999379 0.001 823707506 298854619

8 0.991449 0.031 865591906 371027243

16 0.990825 0.201 870184506 377776027

32 0.997348 0.197 871334506 379988698

128 0.999432 0.347 871674006 380579793

Table 2: Average results for 10
(randomly generated) cases.

We have also looked in detail at the solutions given by the
optimization model. As a representative, we can look at the
results of one of the instances of the 16 class CCCP model. In
Figure 3, we can see on the left the distribution (in logarithmic
scale) of the query rates for the different content classes; the
difference between query rates go across 6 magnitude orders. On
the left, we can see (also in logarithmic scale) the results of the
optimization, namely the values of the cache expiration dates for
each of the 16 content classes. It is clear that, although here we
can also appreciate wide differences in scale, there is no direct
relation with the input data shown on the left.

5. CONCLUSIONS
In this paper, we have developed a model of the impact that cache
expiration times have on the total number of correct answers to
queries in a content network, and on the bandwidth usage. This
model has been used to develop a mathematical programming
formulation, which allows to find optimal values for the cache
expiration times in order to maximize the number of correct
answers, subject to bandwidth limitations. In order to cope with
the explosion of free variables, we have also developed an
alternative formulation based on treating identically groups of
similar contents. To show the feasibility of employing the
mathematical programming formulation, we used a set of test
cases generated randomly in such a way that they comply with
previously published information about existing networks. The

results show that the computational requirements are modest, and
that the model results can lead to non-intuitive solutions giving
high performance levels. We think that models of this kind lead to
improved understanding of the behavior of content networks, and
can be used to test their performance in a wide variety of potential
scenarios, which are difficult to test in practice.

Future work could include using the model with test cases
corresponding to content network of different characteristics
(although the model is generic, the test data shown in this paper
corresponds to a peer-to-peer file sharing network,). It is also
possible to refine the model to take into account additional
features (for example, the search answer packet sizes could be
divided into a fixed part plus a variable, per location answered,
part; additional constraints could be added to represent particular
features of specific networks). Another interesting point is doing a
more detailed analysis of the impact of the number of content
classes chosen on the quality of the results obtained, as well as on
the computational requirements imposed by the solution methods.
Finally, a more difficult challenge is to integrate backbone
behavior details into this model, in order to have a more wide
perspective on the tradeoffs between information publication and
search in a content network.

0.00001

0.001

0.1

10

1000

1 3 5 7 9 11 13 15

Content class index

Q
ue

ry
 ra

te
s

(p
er

 h
ou

r)

0.001
0.01
0.1

1
10

100
1000

1 3 5 7 9 11 13 15

Content class

C
ac

he
 e

xp
ira

tio
n

tim
es

 (m
in

ut
es

)

Figure 3 - input data and output results for a 16 class
CCCP instance.

6. ACKNOWLEDGMENTS
This research has been partially supported by CNPq, Project

PROSUL- Proc. no. 490333/04-4, by INRIA associated teams
program (team PAIR), and by MEC/BID PDT program, Projects
S/C/IF/29/37 and S/C/OP/17/03.

7. REFERENCES
[1] Chu J., Labonte K., and Levine, B., "Availability and locality

measurements of peer-to-peer file systems," in ITCom:
Scalability and Traffic Control in IP Networks. Proceedings
of SPIE, Vol. 4868, July 2002.

 [2] Fourer, R., Gay, D.M, and. Kernighan, B.W. AMPL: A
Modeling Language for Mathematical Programming.
Duxbury Press / Brooks/Cole Publishing Company, 2002.

[3]] Ge, Z., Figueiredo D., Jaiswal S., Kurose J., Towsley D. Z.
Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
"Modeling Peer-Peer File Sharing Systems", Proc. of 22nd
IEEE Infocom, 2003.

[4] Gummadi K., Dunn R., Saroiu S., Gribble S., Levy H., and
Zahorjan J. Measurement, Modeling and Analysis of a Peer-
to-Peer File-Sharing Workload. Proceedings of the 19th
ACM Symposium of Operating Systems Principles (SOSP),
Bolton Landing, NY, October 2003.

[5] ITC, in cooperation with ITU-D SG2. Teletraffic Engineering
Handbook, Draft-version. www.tele.dtu.dk/teletraffic
(homepage maintained by V. B. Iversen; Last accessed 26
May 2005).

[6] Jovanovic, M., Scalability Issues in Large Peer-to-Peer
Networks - A Case Study of Gnutella. University of
Cincinnati Technical Report 2001. Available at
http://www.ececs.uc.edu/~mjovanov/Research/paper.html.

[7] H. T. Kung, et al. MotusNet: A Content Network. Technical
report. Harvard University. 2001.
http://citeseer.nj.nec.com/443175.html.

[8] Kung, H. T., and Wu, C. H. (2002). Content Networks:
Taxonomy and New Approaches. Chapter in The Internet as
a Large-Scale Complex System, Kihong Park and Walter
Willinger (Editors), Oxford University Press. 2002.

[9] Lv Q., Cao P., Cohen E., Li K., and Shenker S.. Search and
replication in unstructured peer-to-peer networks. In
Proceedings of the 16th annual ACM International
Conference on supercomputing, 2002.

[10] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.
Pruyne, B. Richard, S. Rollins, Z. Xu. Peer-to-Peer
Computing. Techical report HPL-2002-57, HP Labs. 2002.
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html.

[11] Murtagh, B. A. and Saunders, M. A. MINOS 5.4 User's
Guide, Report SOL 83-20R, Systems Optimization
Laboratory, Stanford University, December 1983 (revised
February 1995).

[12] Pandurangan, G., Raghavan, P., and Upfal, E. Building Low-
Diameter P2P Networks. In Proceedings of the 42nd Annual
IEEE Symposium on the Foundations of Computer Science
(FOCS) (2001).

[13] Qiu, L., Padmanabham, V. N. , and Voelker, G. M. On the
placement of web server replicas. In Proc. 20th IEEE
INFOCOM, 2001.

[14] Ripeanu M., Foster I., and Iamnitchi A., Mapping the
Gnutella network: Properties of largescale peer-to-peer
systems and implications for system design, IEEE Internet
Computing Journal 6(1), 2002.

[15] Saroiu, S., Krishna Gummadi, P., and Gribble, S.D. A
Measurement Study of Peer-to-Peer File Sharing Systems. In
Proceedings of Multimedia Computing and Networking,
2002

[16] Sen, S. and Wong, J. Analyzing peer-to-peer traffic across
large networks.
http://citeseer.nj.nec.com/sen02analyzing.html

[17] Yang, B. and Garcia-Molina, H. Comparing hybrid peer-to-
peer systems. In Proceedings of VLDB'2001.

[18]Yang B. and Garcia-Molina H. Designing a super-peer
network.. 5.Technical Report, Stanford University, February
2002. http://dbpubs. stanford.edu:8090/pub/2002-13

[19] Yang, B. and Garcia-Molina, H. Designing a Super-Peer
Network. Proc. of the 19th Intl. Conf. on Data Engineering,
2003.

[20] Zeinalipour-Yazti, D. and Folias, T.. A Quantitative Analysis
of the Gnutella Network Traffic.Technical report,
Department of Computer Science University of California -
Riverside, CA 92507, USA
http://www.cs.ucr.edu/~csyiazti/cs204.html

8. APPENDIX: AMPL code examples
We give here more information regarding the AMPL code used
for modeling and solving the CCCP problem instances. Figure 5
corresponds to the CCCP model. Figure 4 contains the AMPL
commands used to solve the problem. Figure 6 shows the detailed
data corresponding to one of the 8 class instances (generated with
seed 1).

option ampl_include '.';

option solver minos;
option minos_options 'crash_option=0 \
 feasibility_tolerance=1.0e-8 scale=no \
 summary_file=6 summary_frequency=5 \
 timing= 1';

model cccp.mod;
data cccp.dat;
solve;
display epsilon;
display bitsIn.lb, bitsIn.ub, bitsIn.body, bitsIn.slack;
display bitsOut.lb, bitsOut.ub, bitsOut.body, bitsOut.slack;
display d;
expand bitsIn, bitsOut;

Figure 4: AMPL commands for solving the CCCP
problem

http://www.ececs.uc.edu/%7Emjovanov/Research/paper.html
http://citeseer.nj.nec.com/443175.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html

Figure 5: AMPL model for CCCP problem

param K >=0, integer;
set CLASS = {1..K};
param f {k in CLASS};
param lamda {k in CLASS};
param mu {k in CLASS};
param l {k in CLASS};

param alphaS >=0;
param alphaB >=0;
param betaS >=0;
param betaB >=0;
param BWin >=0;
param BWout >=0;

var d {k in CLASS} >=0.000001 default 0.000001;

maximize epsilon:
 (sum {k in CLASS} l[k]*lamda[k]/mu[k]/mu[k]/d[k]*(
 mu[k]*(1-exp(-f[k]*d[k])) +
 f[k]*(1-exp(-mu[k]*d[k])) -
 1/d[k]*(1-exp(-f[k]*d[k]))*
 (1-exp(-mu[k]*d[k]))))/

(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]);

subject to bitsIn :
 0 <= betaS*(sum {k in CLASS} l[k]*f[k]) +
 alphaB*(sum {k in CLASS}
l[k]*lamda[k]/mu[k]*f[k]/(1+d[k]*f[k]))
 <= BWin;

subject to bitsOut:
 0 <= alphaS*(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]) +
 betaB*(sum {k in CLASS} l[k]*f[k]/(1+d[k]*f[k]))
 <= BWout;

param K := 8;

param alphaS := 100.00000000;
param alphaB := 310.00000000;
param betaS := 94.00000000;
param betaB := 291.40000000;
param BWin := 921600000.00000000;
param BWout := 460800000.00000000;

param f :=
 1 1000.00000000
 2 216.15859672
 3 32.96348528
 4 5.12742726
 5 0.81727228
 6 0.14024312
 7 0.02464053
 8 0.00447485;
param lamda :=
 1 200.00000000
 2 200.00000000
 3 200.00000000
 4 200.00000000
 5 171.38934707
 6 41.02318819
 7 7.20772083
 8 1.30896076;
param mu :=
 1 1.00000000
 2 1.00000000
 3 1.00000000
 4 1.00000000
 5 1.00000000
 6 1.00000000
 7 1.00000000
 8 1.00000000;
param l :=
 1 4.00000000

2 15 00000000

Figure 6: Detailed data for one of the 8-class instances
of CCCP

	1. INTRODUCTION
	2. CONTENT CACHING PROBLEM FORMULATION
	This section formalizes the problem of caching meta-information in a content network in order to maximize the number of correct answers to the queries, while respecting the bandwidth constraints; this will be our Content Caching Problem (CCP).
	2.1 Network components description
	2.2 Bandwidth constraints
	2.3 Expected number of correct answers
	3. MATHEMATICAL PROGRAMMING FORMULATION
	3.1 Content class based alternative formulation.

	4. NUMERICAL ILLUSTRATION
	4.1 Content caching problem case study.
	4.2 Class content caching problem case study.

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES
	8. APPENDIX: AMPL code examples

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

